博碩士論文 105326028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.149.238.239
姓名 吳俊彥(Jun-Yan Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2018年鹿林山背景及生質燃燒煙團傳輸氣膠特性解析
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2017年8、10月及2018年3、4月,在台灣鹿林山空氣品質測站(海拔2,862公尺)進行大氣氣膠觀測,目的是解析東亞大氣背景及受中南半島生質燃燒煙團傳輸影響的氣膠化學特性。
觀測期間分為前期(2017年)及後期(2018年),前期觀測可分為背景期間與山谷風期間,背景期間PM2.5及PM10平均質量濃度分別為3.5 ± 1.9 µg m-3和6.9 ± 3.6 µg m-3,PM2.5占PM10為58%,可視為東亞高山氣膠背景濃度。後期觀測則分成生質燃燒影響與非生質燃燒影響期間,在生質燃燒影響期間PM2.5與PM10平均質量濃度分別為17.4 ± 3.9 µg m-3與21.6 ± 4.5 µg m-3,PM2.5占PM10的80.3%,顯示中南半島傳輸至東亞的生質燃燒氣膠受細粒徑主宰,PM2.5水溶性離子以nss-SO42-、NO3-與NH4+為主要化學成分,碳成分以OC3為優勢化學成分,但OC4較非生質燃燒期間明顯增加。
後期觀測期間當量黑碳(equivalent black carbon, EBC)與PM10元素碳相關性在生質燃燒期間最好,其次為自由大氣期間,最後為人為污染期間。PM10元素碳質量吸光效率在波長880 nm與950 nm分別為17.79 m2 g-1與15.62 m2 g-1比儀器製造廠商的黑碳質量吸光效率高;另外,EC2與吸光係數相關性明顯較低,說明EC2不是主要的吸光碳成分。
利用Revised IMPROVE公式模擬鹿林山後期觀測期間的PM2.5消光係數並和自動儀器氣膠消光係數比較,相關性很好(R2>0.75),硫酸鹽對消光係數貢獻最大,其次為有機物。在背景期間,大氣氣膠消光係數以空氣分子散光為最顯著因子,其次為硫酸鹽和有機物。在低相對濕度和非靜風狀態下,鹿林山氣膠化學成分和上層大氣氣膠光學厚度線性相關增加。
摘要(英) This study observed the atmospheric aerosol at the Mt. Lulin air-quality station (2,862 m a.s.l.) in Taiwan in August and October 2017 and March and April 2018. The objective is to explore the chemical characteristics of aerosols in the atmospheric background and the transported biomass burning (BB) smoke from Indochina to East Asia.
The observation was split into front and rear observation periods in 2017 and 2018, respectively. The front period was further divided into background and valley wind periods. The background concentrations of PM2.5 and PM10 were 3.5 ± 1.9 μg m-3 and 6.9 ± 3.6 μg m-3, respectively, and PM2.5 accounted for 58% of PM10, which can be regarded as the background aerosol concentration in a high-elevation site in East Asia. In addition, the rear observation period was further divided into the periods of BB and non-BB. The average concentrations of PM2.5 and PM10 during the BB period were 17.4 ± 3.9 μg m-3 and 21.6 ± 4.5 μg m-3, respectively. PM2.5 accounted for 80.3% of PM10, which indicated that fine particlulates dominated the transported BB aerosol. Among PM2.5 chemical compositions, nss-SO42-, NO3- and NH4+ are major water-soluble inorganic ions, and OC3 is the dominant carbonaceous component with a pronounced increase of OC4 during the BB period.
The computed equivalent black carbon (EBC) correlated best with EC in PM10 during the BB period followed by those in the periods of free atmosphere and anthropogenic influence. The mass absorption efficiency of PM10 EC were 17.79 m2 g-1 and 15.62 m2 g-1, respectively, higher than the conversion values adopted by the manufacturer. Moreover, the correlation between EC2 and light absorption coefficient was low, implying that EC2 was not a significant component of light-absorbing carbon.
This study used the Revised IMPROVE formulae to computed atmospheric light extinction to come up with a good correlation (R2>0.75) with the measured values during the rear observation period. Sulfate contributed atmospheric light extinction most followed by organic matter according to the computation. In contrast, Rayleigh scattering by air molecules was the prominent factor followed by sulfate and organic matter in the front observation period. The correlation between PM2.5 chemical components and aerosol optical depth increased when the Mt. Lulin station was in low relative humidity and non-static environmental condition.
關鍵字(中) ★ 鹿林山大氣背景站
★ 生質燃燒氣膠
★ 長程傳輸氣膠化學特性
★ 氣膠光學性質
關鍵字(英) ★ Mt. Lulin Atmospheric Background Station
★ Biomass burning aerosol
★ Aerosol chemical characteristics from long-range transport
★ Aerosol optical properties
論文目次 目錄
摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 生質燃燒 3
2.1.1 東南亞生質燃燒 3
2.1.2 氣膠傳輸特性 4
2.2 生質燃燒氣膠化學特性 5
2.2.1 氣膠碳成分 5
2.2.2 氣膠水溶性無機離子 7
2.2.3 氣膠單醣脫水化合物 8
2.2.4 氣膠二元酸 10
2.2.5 氣膠似腐植質(HULIS) 11
2.3 氣膠光學厚度(aerosol optical depth, AOD) 13
2.4 氣膠吸光特性 15
第三章 研究方法 18
3.1 研究架構 18
3.2 鹿林山空氣品質背景監測站(Lulin Atmospheric Background Station, LABS) 18
3.2.1台灣鹿林山密集觀測期間逆推氣流軌跡線分類 21
3.3.2 台灣鹿林山谷風判斷方法 25
3.3 採樣觀測儀器 27
3.3.1 R&P Model 3500自組式蜂巢式套管化學採樣器 27
3.3.2 高量採樣器 29
3.4 採樣濾紙選擇與前處理程序 31
3.4.1 儀器與濾紙配置 31
3.4.2 濾紙前處理 33
3.4.3 樣本運送與保存 34
3.5 樣本分析方法 34
3.5.1 樣本質量濃度秤重 34
3.5.2 氣膠碳成分分析 35
3.5.3 氣膠水溶性離子分析 38
3.5.4 氣膠微粒揮發成分補償方法 41
3.5.5 氣膠水可溶有機碳分析 44
3.5.6 氣膠單醣脫水化合物 46
3.5.7 氣膠二元酸分析 48
3.5.8 氣膠腐植質分析 49
3.6 非海洋來源氣膠水溶性離子 51
3.7 判別生質燃燒發生的方法 52
3.7.1 美國太空總署(NASA)自然災害網 52
3.7.2 美國太空總署全球火災監測中心(GFMC) 53
3.7.3 氣流軌跡模式(NOAA HYSPLIT) 53
3.8 Revised IMPROVE 模擬消光係數 53
3.9 NOAA氣膠觀測系統 55
3.9.1積分式散光儀(Integrating Nephelometer) 55
3.9.2微粒碳吸收光度計(PSAP) 58
第四章 結果與討論 61
4.1 2018年鹿林山氣膠化學成分特性 61
4.1.1氣膠質量濃度 61
4.1.2氣膠水溶性無機離子 63
4.1.3氣膠碳成分 66
4.1.4氣膠有機物 71
4.1.5觀測期間結果彙整 75
4.2 近三年鹿林山手動觀測氣膠成分特性 79
4.3氣膠質量光學效率 84
4.4 IMPROVE模式模擬氣膠PM2.5消光係數 90
4.4.1IMPROVE模式模擬大氣消光係數與貢獻因子 91
4.4.2Revised IMPROVE模式模擬大氣能見度 94
4.5 鹿林山氣膠化學成分與AOD關係 96
第五章 結論 100
第六章 參考文獻 102
附錄一 鹿林山逆推軌跡圖 118
附錄二 鹿林山逆推軌跡圖分類 139
附錄三 鹿林山後期觀測火點圖 143
附錄四 口試委員意見回復 146
參考文獻 Adachi, K., Buseck, P., 2008. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City. Atmospheric Chemistry and Physics 8, 6469-6481.
Aggarwal, S.G., Kawamura, K., 2009. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment 43, 2532-2540.
Aiken, A., Leone, O., Nitschke, K., Dubey, M., Carrico, C., Springston, S., Sedlacek III, A., Watson, T., Kuang, C., Uin, J., 2016. Biomass Burning Emissions of Black Carbon from African Sources, AGU Fall Meeting Abstracts.
Altieri, K., Seitzinger, S., Carlton, A., Turpin, B., Klein, G., Marshall, A., 2008. Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry. Atmospheric Environment 42, 1476-1490.
Ancellet, G., Pelon, J., Totems, J., Chazette, P., Bazureau, A., Sicard, M., Di Iorio, T., Dulac, F., Mallet, M., 2016. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin. Atmospheric Chemistry and Physics 16, 4725-4742.
Andreae, M.O., 1983. Soot carbon and excess fine potassium: Long-range transport of combustion-derived aerosols. Science 220, 1148-1151.
Andreae, M.O., Andreae, T.W., Annegarn, H., Beer, J., Cachier, H., le Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F.G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. J. Geophys. Res.-Atmos. 103, 32119-32128.
Andreae, M.O., Schmid, O., Yang, H., Chand, D., Yu, J.Z., Zeng, L.-M., Zhang, Y.-H., 2008. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China. Atmospheric Environment 42, 6335-6350.
Andrews, E., Ogren, J., Bonasoni, P., Marinoni, A., Cuevas, E., Rodríguez, S., Sun, J.Y., Jaffe, D., Fischer, E., Baltensperger, U., 2011. Climatology of aerosol radiative properties in the free troposphere. Atmospheric Research 102, 365-393.
Arimoto, R., Duce, R., Savoie, D., Prospero, J., Talbot, R., Cullen, J., Tomza, U., Lewis, N., Ray, B., 1996. Relationships among aerosol constituents from Asia and the North Pacific during PEM‐West A. Journal of Geophysical Research: Atmospheres 101, 2011-2023.
Asa-Awuku, A., Sullivan, A., Hennigan, C., Weber, R., Nenes, A., 2008. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol. Atmospheric Chemistry and Physics 8, 799-812.
Begam, G.R., Vachaspati, C.V., Ahammed, Y.N., Kumar, K.R., Reddy, R., Sharma, S., Saxena, M., Mandal, T., 2017. Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India). Environmental Science and Pollution Research 24, 1719-1734.
Bergstrom, R.W., Pilewskie, P., Russell, P.B., Redemann, J., Bond, T.C., Quinn, P.K., Sierau, B., 2007. Spectral absorption properties of atmospheric aerosols. Atmospheric Chemistry and Physics 7, 5937-5943.
Bilal, M., Nichol, J.E., Bleiweiss, M.P., Dubois, D., 2013. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote sensing of environment 136, 135-145.
Bond, T.C., Bergstrom, R.W., 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol science and technology 40, 27-67.
Bond, T.C., Habib, G., Bergstrom, R.W., 2006. Limitations in the enhancement of visible light absorption due to mixing state. Journal of Geophysical Research: Atmospheres 111.
Briggs, N.L., Jaffe, D.A., Gao, H., Hee, J.R., Baylon, P.M., Zhang, Q., Zhou, S., Collier, S.C., Sampson, P.D., Cary, R.A., 2016. Particulate matter, ozone, and nitrogen species in aged wildfire plumes observed at the Mount Bachelor Observatory. Aerosol and Air Quality Research 16.
Cao, J., Lee, S., Chow, J.C., Watson, J.G., Ho, K., Zhang, R., Jin, Z., Shen, Z., Chen, G., Kang, Y., 2007. Spatial and seasonal distributions of carbonaceous aerosols over China. Journal of geophysical research: atmospheres 112.
Cao, J., Lee, S., Ho, K., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res 6.
Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Cavalli, F., Facchini, M., Decesari, S., Mircea, M., Emblico, L., Fuzzi, S., Ceburnis, D., Yoon, Y., O′Dowd, C., Putaud, J.P., 2004. Advances in characterization of size‐resolved organic matter in marine aerosol over the North Atlantic. Journal of Geophysical Research: Atmospheres (1984–2012) 109.
Cavalli, F., Viana, M., Yttri, K.E., Genberg, J., Putaud, J.-P., 2010. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmospheric Measurement Techniques 3, 79-89.
Che, H., Xia, X., Zhu, J., Wang, H., Wang, Y., Sun, J., Zhang, X., Shi, G., 2015. Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environmental Science and Pollution Research 22, 1043-1053.
Chen, L.-W.A., Moosmüller, H., Arnott, W.P., Chow, J.C., Watson, J.G., Susott, R.A., Babbitt, R.E., Wold, C.E., Lincoln, E.N., Hao, W.M., 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environmental science & technology 41, 4317-4325.
Chen, Y., Zhao, D., Chai, F., Liang, G., Xue, Z., Wang, B., Liang, Y., Chen, Y., Zhang, M., 2010. Correlation between the atmospheric visibility and aerosol fine particle concentrations in Guangzhou and Beijing. China Environmental Science 30, 967-971.
Cheng, Y., He, K.-b., Duan, F.-k., Zheng, M., Du, Z.-y., Ma, Y.-l., Tan, J.-h., 2011a. Ambient organic carbon to elemental carbon ratios: Influences of the measurement methods and implications. Atmospheric environment 45, 2060-2066.
Cheng, Y., He, K.-B., Zheng, M., Duan, F.-K., Du, Z.-Y., Ma, Y.-L., Tan, J.-H., Yang, F.-M., Liu, J.-M., Zhang, X.-L., 2011b. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmospheric Chemistry and Physics 11, 11497-11510.
Cheng, Y., Wiedensohler, A., Eichler, H., Su, H., Gnauk, T., Brüggemann, E., Herrmann, H., Heintzenberg, J., Slanina, J., Tuch, T., 2008. Aerosol optical properties and related chemical apportionment at Xinken in Pearl River Delta of China. Atmospheric Environment 42, 6351-6372.
Chew, B.N., Campbell, J., Hyer, E.J., Salinas, S.V., Reid, J.S., Welton, E.J., Holben, B.N., Liew, S.C., 2016. Relationship between aerosol optical depth and particulate matter over Singapore: Effects of aerosol vertical distributions.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Christopher, D.E., Kimberly, E.B., 1996. Survey of fires in Southeast Asia and India during 1987. In: Levine, J. (Ed.), Global Biomass burning, vol. 2. MIT Press, Cambridge, MA, pp., 663-670.
Chu, D.A., Kaufman, Y., Zibordi, G., Chern, J., Mao, J., Li, C., Holben, B., 2003. Global monitoring of air pollution over land from the Earth Observing System‐Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research: Atmospheres 108.
Chuang, M.-T., Fu, J.S., Lin, N.-H., Lee, C.-T., Gao, Y., Wang, S.-H., Sheu, G.-R., Hsiao, T.-C., Wang, J.-L., Yen, M.-C., 2015. Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment. Atmospheric Environment 112, 294-305.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H., Wu, X.-C., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P., 2004. Formation of secondary organic aerosols through photooxidation of isoprene. Science 303, 1173-1176.
Clarke, A., Shinozuka, Y., Kapustin, V., Howell, S., Huebert, B., Doherty, S., Anderson, T., Covert, D., Anderson, J., Hua, X., 2004. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry and optical properties. Journal of Geophysical Research: Atmospheres 109.
Cong, Z., Kawamura, K., Kang, S., Fu, P., 2015. Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids. Sci Rep 5, 9580.
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., Weber, R., 2014. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmospheric Environment 89, 235-241.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Dye, C., Yttri, K.E., 2005. Determination of monosaccharide anhydrides in atmospheric aerosols by use of high-performance liquid chromatography combined with high-resolution mass spectrometry. Analytical chemistry 77, 1853-1858.
Engel-Cox, J.A., Holloman, C.H., Coutant, B.W., Hoff, R.M., 2004. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric environment 38, 2495-2509.
Falkovich, A.H., Graber, E.R., Schkolnik, G., Rudich, Y., Maenhaut, W., Artaxo, P., 2005. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods. Atmos. Chem. Phys. 5, 781-797.
Frank, N.H., 2006. Retained nitrate, hydrated sulfates, and carbonaceous mass in federal reference method fine particulate matter for six eastern US cities. Journal of the Air & Waste Management Association 56, 500-511.
Fraser, M.P., Lakshmanan, K., 2000. Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols. Environmental Science & Technology 34, 4560-4564.
Fu, P., Kawamura, K., Usukura, K., Miura, K., 2013. Dicarboxylic acids, ketocarboxylic acids and glyoxal in the marine aerosols collected during a round-the-world cruise. Marine Chemistry 148, 22-32.
Gelencser, A., Hoffer, A., Kiss, G., Tombacz, E., Kurdi, R., Bencze, L., 2003. In-situ formation of light-absorbing organic matter in cloud water. Journal of Atmospheric Chemistry 45, 25-33.
Graber, E.R., Rudich, Y., 2006. Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics 6, 729-753.
Griffing, G.W., 1980. Relations between the prevailing visibility, nephelometer scattering coefficient and sunphotometer turbidity coefficient. Atmospheric Environment (1967) 14, 577-584.
Grosjean, D., 1976. Secondary organic aerosols and their gas phase precursors, ENVR-2, 171st Meeting Am. Chem. Soc., New York.
Gupta, P., Christopher, S.A., 2009a. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach. Journal of Geophysical Research: Atmospheres 114.
Gupta, P., Christopher, S.A., 2009b. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research: Atmospheres 114.
Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y., Kumar, N., 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment 40, 5880-5892.
Hoff, R.M., Christopher, S.A., 2009. Remote sensing of particulate pollution from space: have we reached the promised land? Journal of the Air & Waste Management Association 59, 645-675.
Holmes, B.J., Petrucci, G.A., 2006. Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols. Environmental science & technology 40, 4983-4989.
Holmes, B.J., Petrucci, G.A., 2007. Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols. Journal of Atmospheric Chemistry 58, 151-166.
Huang, J., Minnis, P., Yi, Y., Tang, Q., Wang, X., Hu, Y., Liu, Z., Ayers, K., Trepte, C., Winker, D., 2007. Summer dust aerosols detected from CALIPSO over the Tibetan Plateau. Geophysical Research Letters 34.
Huang, K., Fu, J.S., Hsu, N.C., Gao, Y., Dong, X., Tsay, S.-C., Lam, Y.F., 2013. Impact assessment of biomass burning on air quality in Southeast and East Asia during BASE-ASIA. Atmospheric environment 78, 291-302.
Husar, R.B., Husar, J.D., Martin, L., 2000. Distribution of continental surface aerosol extinction based on visual range data. Atmospheric Environment 34, 5067-5078.
Hyer, E.J., Chew, B.N., 2010. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia. Atmospheric Environment 44, 1422-1427.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695.
Jung, J., Kim, Y.J., 2011. Tracking sources of severe haze episodes and their physicochemical and hygroscopic properties under Asian continental outflow: Long‐range transport pollution, postharvest biomass burning, and Asian dust. Journal of Geophysical Research: Atmospheres 116.
Jung, J., Lee, H., Kim, Y.J., Liu, X., Zhang, Y., Gu, J., Fan, S., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. Journal of environmental management 90, 3231-3244.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science & Technology 27, 2227-2235.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science & Technology 21, 105-110.
Kawamura, K., Kasukabe, H., Barrie, L.A., 2010. Secondary formation of water‐soluble organic acids and α‐dicarbonyls and their contributions to total carbon and water‐soluble organic carbon: Photochemical aging of organic aerosols in the Arctic spring. Journal of Geophysical Research: Atmospheres 115.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research: Atmospheres 104, 3501-3509.
Khan, B., Hays, M.D., Geron, C., Jetter, J., 2012. Differences in the OC/EC ratios that characterize ambient and source aerosols due to thermal-optical analysis. Aerosol Science and Technology 46, 127-137.
Kim, P.S., Jacob, D.J., Mickley, L.J., Koplitz, S.N., Marlier, M.E., DeFries, R.S., Myers, S.S., Chew, B.N., Mao, Y.H., 2015. Sensitivity of population smoke exposure to fire locations in Equatorial Asia. Atmospheric Environment 102, 11-17.
Koch, D., Bond, T.C., Streets, D., Unger, N., Van der Werf, G.R., 2007. Global impacts of aerosols from particular source regions and sectors. Journal of Geophysical Research: Atmospheres 112.
Kondo, Y., Miyazaki, Y., Takegawa, N., Miyakawa, T., Weber, R., Jimenez, J.L., Zhang, Q., Worsnop, D., 2007. Oxygenated and water‐soluble organic aerosols in Tokyo. Journal of Geophysical Research: Atmospheres 112.
Křůmal, K., Mikuška, P., Vojtěšek, M., Večeřa, Z., 2010. Seasonal variations of monosaccharide anhydrides in PM1 and PM2. 5 aerosol in urban areas. Atmospheric Environment 44, 5148-5155.
Kumar, N., Chu, A., Foster, A., 2007. An empirical relationship between PM2. 5 and aerosol optical depth in Delhi Metropolitan. Atmospheric Environment 41, 4492-4503.
Lack, D.A., Quinn, P.K., Massoli, P., Bates, T.S., Coffman, D., Covert, D.S., Sierau, B., Tucker, S., Baynard, T., Lovejoy, E., 2009. Relative humidity dependence of light absorption by mineral dust after long‐range atmospheric transport from the Sahara. Geophysical Research Letters 36.
Laing, J.R., Jaffe, D.A., Hee, J.R., 2016. Physical and optical properties of aged biomass burning aerosol from wildfires in Siberia and the Western USA at the Mt. Bachelor Observatory. Atmospheric Chemistry and Physics 16, 15185-15197.
Le Canut, P., Andreae, M., Harris, G., Wienhold, F., Zenker, T., 1996. Airborne studies of emissions from savanna fires in southern Africa: 1. Aerosol emissions measured with a laser optical particle counter. Journal of Geophysical Research: Atmospheres 101, 23615-23630.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011. The enhancement of PM 2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Levin, E., McMeeking, G., Carrico, C., Mack, L., Kreidenweis, S., Wold, C., Moosmüller, H., Arnott, W., Hao, W., Collett Jr, J., 2010. Biomass burning smoke aerosol properties measured during Fire Laboratory at Missoula Experiments (FLAME). Journal of Geophysical Research: Atmospheres 115.
Li, C., Lau, A.-H., Mao, J., Chu, D.A., 2005. Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong. IEEE Transactions on Geoscience and Remote Sensing 43, 2650-2658.
Li, X., Wang, L., Wang, Y., Wen, T., Yang, Y., Zhao, Y., Wang, Y., 2012. Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmospheric Environment 50, 278-286.
Li, Z., Xia, X., Cribb, M., Mi, W., Holben, B., Wang, P., Chen, H., Tsay, S.C., Eck, T., Zhao, F., 2007. Aerosol optical properties and their radiative effects in northern China. Journal of Geophysical Research: Atmospheres 112.
Limbeck, A., Puxbaum, H., 1999. Organic acids in continental background aerosols. Atmospheric Environment 33, 1847-1852.
Lin, L.-F., Lee, W.-J., Li, H.-W., Wang, M.-S., Chang-Chien, G.-P., 2007. Characterization and inventory of PCDD/F emissions from coal-fired power plants and other sources in Taiwan. Chemosphere 68, 1642-1649.
Lin, N.-H., Tsay, S.-C., Maring, H.B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K.H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J.S., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
Lin, P., Engling, G., Yu, J.Z., 2010. Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmospheric Chemistry and Physics 10, 6487-6500.
Liousse, C., Cachier, H., Jennings, S., 1993. Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation cross-section, sigma (σ). Atmospheric Environment. Part A. General Topics 27, 1203-1211.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment 40, 445-466.
Locker, H.B., 1988. The use of levoglucosan to assess the environmental impact of residential wood-burning on air quality. Dartmouth Coll., Hanover, NH (USA).
Loría-Salazar, S.M., Panorska, A., Arnott, W.P., Barnard, J.C., Boehmler, J.M., Holmes, H.A., 2017. Toward understanding atmospheric physics impacting the relationship between columnar aerosol optical depth and near-surface PM2. 5 mass concentrations in Nevada and California, USA, during 2013. Atmospheric environment 171, 289-300.
Malm, W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmospheric Environment 35, 2845-2860.
Malm, W.C., Day, D.E., Kreidenweis, S.M., Collett, J.L., Lee, T., 2003. Humidity‐dependent optical properties of fine particles during the Big Bend Regional Aerosol and Visibility Observational Study. Journal of Geophysical Research: Atmospheres 108.
Malm, W.C., Schichtel, B.A., Pitchford, M.L., Ashbaugh, L.L., Eldred, R.A., 2004. Spatial and monthly trends in speciated fine particle concentration in the United States. Journal of Geophysical Research: Atmospheres 109.
Manchester-Neesvig, J.B., Schauer, J.J., Cass, G.R., 2003. The distribution of particle-phase organic compounds in the atmosphere and their use for source apportionment during the Southern California Children’s Health Study. Journal of the Air & Waste Management Association 53, 1065-1079.
Mayol‐Bracero, O., Guyon, P., Graham, B., Roberts, G., Andreae, M., Decesari, S., Facchini, M., Fuzzi, S., Artaxo, P., 2002. Water‐soluble organic compounds in biomass burning aerosols over amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research: Atmospheres 107.
Meng, J., Wang, G., Li, J., Cheng, C., Cao, J., 2013. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau. Atmospheric environment 79, 582-589.
Moosmüller, H., Chakrabarty, R., Arnott, W., 2009. Aerosol light absorption and its measurement: A review. Journal of Quantitative Spectroscopy and Radiative Transfer 110, 844-878.
Narukawa, M., Kawamura, K., Takeuchi, N., Nakajima, T., 1999. Distribution of dicarboxylic acids and carbon isotopic compositions in aerosols from 1997 Indonesian forest fires. Geophysical Research Letters 26, 3101-3104.
Novakov, T., Andreae, M., Gabriel, R., Kirchstetter, T., Mayol‐Bracero, O., Ramanathan, V., 2000. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels? Geophysical Research Letters 27, 4061-4064.
Oanh, N.T.K., Ly, B.T., Tipayarom, D., Manandhar, B.R., Prapat, P., Simpson, C.D., Liu, L.-J.S., 2011. Characterization of particulate matter emission from open burning of rice straw. Atmospheric Environment 45, 493-502.
Ou Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric environment 46, 279-288.
Ozkaynak, H., Schatz, A.D., Thurston, G.D., Isaacs, R.G., Husar, R.B., 1985. Relationships between aerosol extinction coefficients derived from airport visual range observations and alternative measures of airborne particle mass. Journal of the Air Pollution Control Association 35, 1176-1185.
Pathak, R.K., Wang, T., Ho, K.F., Lee, S.C., 2011. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmospheric Environment 45, 318-325.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pio, C., Legrand, M., Alves, C., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sánchez-Ochoa, A., Gelencsér, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Pitchford, M., Malm, W., Schichtel, B., Kumar, N., Lowenthal, D., Hand, J., 2007. Revised algorithm for estimating light extinction from IMPROVE particle speciation data. Journal of the Air & Waste Management Association 57, 1326-1336.
Popovicheva, O., Engling, G., Lin, K.-T., Persiantseva, N., Timofeev, M., Kireeva, E., Völk, P., Hubert, A., Wachtmeister, G., 2015. Diesel/biofuel exhaust particles from modern internal combustion engines: microstructure, composition, and hygroscopicity. Fuel 157, 232-239.
Popovicheva, O., Kistler, M., Kireeva, E., Persiantseva, N., Timofeev, M., Kopeikin, V., Kasper-Giebl, A., 2014. Physicochemical characterization of smoke aerosol during large-scale wildfires: Extreme event of August 2010 in Moscow. Atmospheric environment 96, 405-414.
Popovicheva, O.B., Shonija, N.K., Persiantseva, N., Timofeev, M., Diapouli, E., Eleftheriadis, K., Borgese, L., Nguyen, X.A., 2017. Aerosol pollutants during agricultural biomass burning: A case study in Ba Vi region in Hanoi, Vietnam. Aerosol and Air Quality Research 17, 2762-2779.
Puxbaum, H., Caseiro, A., Sánchez‐Ochoa, A., Kasper‐Giebl, A., Claeys, M., Gelencsér, A., Legrand, M., Preunkert, S., Pio, C., 2007. Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background. Journal of Geophysical Research: Atmospheres (1984–2012) 112.
Quinn, P., Coffman, D., Bates, T., Welton, E., Covert, D., Miller, T., Johnson, J., Maria, S., Russell, L., Arimoto, R., 2004. Aerosol optical properties measured on board the Ronald H. Brown during ACE‐Asia as a function of aerosol chemical composition and source region. Journal of Geophysical Research: Atmospheres 109.
Rajput, P., Sarin, M., Sharma, D., Singh, D., 2014. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Environmental Science: Processes & Impacts 16, 2371-2379.
Ram, K., Sarin, M., 2009. Absorption coefficient and site-specific mass absorption efficiency of elemental carbon in aerosols over urban, rural, and high-altitude sites in India. Environmental science & technology 43, 8233-8239.
Reid, J., Koppmann, R., Eck, T., Eleuterio, D., 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 799-825.
Reid, J.S., Hyer, E.J., Johnson, R.S., Holben, B.N., Yokelson, R.J., Zhang, J., Campbell, J.R., Christopher, S.A., Di Girolamo, L., Giglio, L., 2013. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research 122, 403-468.
Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R., 1991. Sources of fine organic aerosol. 1. Charbroilers and meat cooking operations. Environmental Science & Technology 25, 1112-1125.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment. Part A. General Topics 27, 1309-1330.
Salinas, S.V., Chew, B.N., Liew, S.C., 2009. Retrievals of aerosol optical depth and Ångström exponent from ground-based Sun-photometer data of Singapore. Applied optics 48, 1473-1484.
Salinas, S.V., Chew, B.N., Mohamad, M., Mahmud, M., Liew, S.C., 2013. First measurements of aerosol optical depth and Angstrom exponent number from AERONET′s Kuching site. Atmospheric environment 78, 231-241.
Sarigiannis, D.Α., Karakitsios, S.P., Kermenidou, M.V., 2015. Health impact and monetary cost of exposure to particulate matter emitted from biomass burning in large cities. Science of The Total Environment 524–525, 319-330.
Saxena, P., Hildemann, L.M., 1996. Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of atmospheric chemistry 24, 57-109.
Schaap, M., Apituley, A., Timmermans, R., Koelemeijer, R., Leeuw, G.d., 2009. Exploring the relation between aerosol optical depth and PM 2.5 at Cabauw, the Netherlands. Atmospheric Chemistry and Physics 9, 909-925.
Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., Simoneit, B.R., 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 30, 3837-3855.
Schichtel, B.A., Husar, R.B., Falke, S.R., Wilson, W.E., 2001. Haze trends over the United States, 1980–1995. Atmospheric Environment 35, 5205-5210.
Schichtel, B.A., Malm, W.C., Bench, G., Fallon, S., McDade, C.E., Chow, J.C., Watson, J.G., 2008. Fossil and contemporary fine particulate carbon fractions at 12 rural and urban sites in the United States. Journal of Geophysical Research: Atmospheres (1984–2012) 113.
Schkolnik, G., Rudich, Y., 2006. Detection and quantification of levoglucosan in atmospheric aerosols: A review. Analytical and Bioanalytical Chemistry 385, 26-33.
See, S., Balasubramanian, R., 2006. Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environmental Research 102, 197-204.
See, S., Wang, Y., Balasubramanian, R., 2007. Contrasting reactive oxygen species and transition metal concentrations in combustion aerosols. Environmental Research 103, 317-324.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Sempere, R., Kawamura, K., 1994. Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmospheric Environment 28, 449-459.
Sheesley, R.J., Schauer, J.J., Chowdhury, Z., Cass, G.R., Simoneit, B.R., 2003. Characterization of organic aerosols emitted from the combustion of biomass indigenous to South Asia. Journal of Geophysical Research: Atmospheres 108.
Shen, Z.-X., Cao, J.-J., Tong, Z., Liu, S.-X., Reddy, L.S.S., Han, Y., Zhang, T., Zhou, J., 2009. Chemical characteristics of submicron particles in winter in Xi’an.
Shendrikar, A.D., Steinmetz, W.K., 2003. Integrating nephelometer measurements for the airborne fine particulate matter (PM2. 5) mass concentrations. Atmospheric Environment 37, 1383-1392.
Sillanpää, M., Saarikoski, S., Hillamo, R., Pennanen, A., Makkonen, U., Spolnik, Z., Van Grieken, R., Koskentalo, T., Salonen, R.O., 2005. Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Science of The Total Environment 350, 119-135.
Simoneit, B.R., 2002. Biomass burning—a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17, 129-162.
Sioutas, C., Wang, P., Ferguson, S., Koutrakis, P., Mulik, J.D., 1996. Laboratory and field evaluation of an improved glass honeycomb denuder/filter pack sampler. Atmospheric Environment 30, 885-895.
Son, S.-C., Bae, M.-S., Park, S.-S., 2015. Chemical characteristics and formation pathways of humic like substances (HULIS) in PM 2.5 in an urban area. Journal of Korean Society for Atmospheric Environment 31, 239-254.
Streets, D., Yarber, K., Woo, J.H., Carmichael, G., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17.
Sumlin, B.J., Pandey, A., Walker, M.J., Pattison, R.S., Williams, B.J., Chakrabarty, R.K., 2017. Atmospheric photooxidation diminishes light absorption by primary brown carbon aerosol from biomass burning. Environmental Science & Technology Letters 4, 540-545.
Swap, R., Garstang, M., Macko, S., Tyson, P., Maenhaut, W., Artaxo, P., Kållberg, P., Talbot, R., 1996. The long‐range transport of southern African aerosols to the tropical South Atlantic. Journal of Geophysical Research: Atmospheres 101, 23777-23791.
Tang, X., Zhang, X., Wang, Z., Ci, Z., 2016. Water-soluble organic carbon (WSOC) and its temperature-resolved carbon fractions in atmospheric aerosols in Beijing. Atmospheric Research 181, 200-210.
Tao, M., Chen, L., Wang, Z., Tao, J., Su, L., 2013. Satellite observation of abnormal yellow haze clouds over East China during summer agricultural burning season. Atmospheric environment 79, 632-640.
Targino, A.C., Noone, K.J., Öström, E., 2005. Airborne in situ characterization of dry aerosol optical properties in a multisource influenced marine region. Tellus B: Chemical and Physical Meteorology 57, 247-260.
Timonen, H., Carbone, S., Aurela, M., Saarnio, K., Saarikoski, S., Ng, N.L., Canagaratna, M.R., Kulmala, M., Kerminen, V.-M., Worsnop, D.R., 2013. Characteristics, sources and water-solubility of ambient submicron organic aerosol in springtime in Helsinki, Finland. Journal of Aerosol Science 56, 61-77.
Toth, T., Zhang, J., Campbell, J., Hyer, E., Reid, J., Shi, Y., Westphal, D., 2014. Impact of data quality and surface-to-column representativeness on the PM 2.5/satellite AOD relationship for the contiguous United States. Atmospheric Chemistry and Physics 14, 6049-6062.
Trebs, I., Meixner, F., Slanina, J., Otjes, R., Jongejan, P., Andreae, M., 2004. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin. Atmospheric Chemistry and Physics 4, 967-987.
Wang, H., Tian, M., Li, X., Chang, Q., Cao, J., Yang, F., Ma, Y., He, K., 2015. Chemical composition and light extinction contribution of PM2. 5 in urban Beijing for a 1-year period. Aerosol Air Qual. Res 15, 2200-2211.
Wang, J., Christopher, S.A., 2003. Intercomparison between satellite‐derived aerosol optical thickness and PM2. 5 mass: Implications for air quality studies. Geophysical research letters 30.
Wang, J., Wang, S., Jiang, J., Ding, A., Zheng, M., Zhao, B., Wong, D.C., Zhou, W., Zheng, G., Wang, L., 2014. Impact of aerosol–meteorology interactions on fine particle pollution during China’s severe haze episode in January 2013. Environmental Research Letters 9, 094002.
Wang, Q., Shao, M., Liu, Y., William, K., Paul, G., Li, X., Liu, Y., Lu, S., 2007. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment 41, 8380-8390.
Washenfelder, R., Attwood, A., Brock, C., Guo, H., Xu, L., Weber, R., Ng, N., Allen, H., Ayres, B., Baumann, K., 2015. Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophysical Research Letters 42, 653-664.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science 34, 1445-1463.
Wong, M.S., Nichol, J., Lee, K.H., Lee, B.Y., 2011. Monitoring 2.5 μm particulate matter within urbanized regions using satellite-derived aerosol optical thickness, a study in Hong Kong. International journal of remote sensing 32, 8449-8462.
Xia, X., Li, Z., Holben, B., Wang, P., Eck, T., Chen, H., Cribb, M., Zhao, Y., 2007. Aerosol optical properties and radiative effects in the Yangtze Delta region of China. Journal of Geophysical Research: Atmospheres 112.
Xia, X., Wang, P., Wang, Y., Li, Z., Xin, J., Liu, J., Chen, H., 2008. Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert. Geophysical Research Letters 35.
Xiang-Ao, X., Hong-Bin, C., Pu-Cai, W., Xue-Mei, Z., Jin-Huan, Q., Gouloub, P., 2005. Aerosol properties and their spatial and temporal variations over North China in spring 2001. Tellus B: Chemical and Physical Meteorology 57, 28-39.
Yan, C., Zheng, M., Sullivan, A.P., Bosch, C., Desyaterik, Y., Andersson, A., Li, X., Guo, X., Zhou, T., Gustafsson, Ö., 2015. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. Atmospheric Environment 121, 4-12.
Yunfeng, L., Daren, L., Xiuji, Z., Weiliang, L., Qing, H., 2001. Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. Journal of Geophysical Research: Atmospheres 106, 14501-14513.
Zdráhal, Z., Oliveira, J., Vermeylen, R., Claeys, M., Maenhaut, W., 2002. Improved method for quantifying levoglucosan and related monosaccharide anhydrides in atmospheric aerosols and application to samples from urban and tropical locations. Environmental Science & Technology 36, 747-753.
Zhang, H., Shi, C., Qiu, M., Xie, W., 2010. Long-term variation of haze phenomena in Hefei and its impact factors. Acta Sci. Circumst 30, 714-721.
Zhang, R.-J., CAO, J.-j., LEE, S.-c., SHEN, Z.-x., Kin-Fai, H., 2007. Carbonaceous aerosols in PM10 and pollution gases in winter in Beijing. Journal of Environmental Sciences 19, 564-571.
Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., Liu, X., 2008. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment 42, 7013-7021.
Zheng, Y., Che, H., Zhao, T., Zhao, H., Gui, K., Sun, T., An, L., Yu, J., Liu, C., Jiang, Y., 2017. Aerosol optical properties observation and its relationship to meteorological conditions and emission during the Chinese National Day and Spring Festival holiday in Beijing. Atmospheric research 197, 188-200.
Zhu, C., Kawamura, K., Kunwar, B., 2015. Effect of biomass burning over the western North Pacific Rim: wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmospheric Chemistry and Physics 15, 1959-1973.
Zhu, J., Xia, X., Che, H., Wang, J., Zhang, J., Duan, Y., 2016. Study of aerosol optical properties at Kunming in southwest China and long-range transport of biomass burning aerosols from North Burma. Atmospheric research 169, 237-247.
Zou, J., Liu, Z., Hu, B., Huang, X., Wen, T., Ji, D., Liu, J., Yang, Y., Yao, Q., Wang, Y., 2018. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin. Atmospheric Research 201, 235-246.
余政哲, 2010. 鹿林山大氣氣膠含水量探討及乾氣膠光學特性. 國立中央大學環境工程研究所碩士論文.
侯雅馨, 2008. 大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究. 國立中央大學環境工程研究所碩士論文.
洪國鈞, 2014. 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析. 國立中央大學環境工程研究所碩士論文.
莊仲霆, 2016. 2015年中南半島近生質燃燒源與煙團傳輸氣膠特性解析. 國立中央大學環境工程研究所碩士論文.
陳聖中, 2012. 台灣都市地區細懸浮微粒 (PM2.5) 手動採樣分析探討. 國立中央大學環境工程研究所碩士論文.
陳建安, 2018. 2016年鹿林山生質燃燒煙團傳輸氣膠特性解析. 國立中央大學環境工程 0-研究所碩士論文.
指導教授 李崇德 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明