博碩士論文 106324054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.149.255.162
姓名 陳彥齊(Yen-Chi Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 循環拉伸與電刺激之協同作用對肌肉分化的影響
(Synergic effect of mechanical/electrical stimulations on myoblast differentiation)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 機械和電刺激對肌肉生成有正向作用。然而,如何在設備上結合機械和電刺激以有效地觀察細胞或組織,這仍然是一個挑戰。因此,我們設計一種生物裝置,能夠同時機械和電刺激細胞。在本研究中,我們以小鼠骨骼成肌細胞C2C12作為研究對象,研究其在經過機械/電刺激後的分化行為。雖然刺激有助於分化,但MTT生物活性測試顯示電刺激或循環拉伸刺激的強度過強會導致生物活性下降。在細胞排列實驗中發現直流電刺激並不影響C2C12排列方向,而拉伸量至少9%以上的循環拉伸刺激即能促使C2C12沿著與拉伸方向垂直的方向進行高度排列。而複合刺激實驗中其中細胞排列取決於拉伸方向,並不受電場的方向所影響。在肌管分化的實驗中, qPCR結果證實拉伸刺激或電刺激皆能夠增加分化標誌基因的表達,肌球重鏈蛋白(MHC)免疫染色實驗指出兩種刺激都會有效地增加肌管的數量及提升分化率,且拉伸刺激有助於控制肌管的排列。與單一刺激相比,複合刺激不僅保有維持肌管排列的效果,還能使分化標誌基因更加上調控或維持高水準,這些結果都指出拉伸/電複合刺激對於肌肉組織工程極具潛力。
摘要(英) Mechanical and electrical stimulations have been applied to pormote myogenesis. However, how to simultaneously apply these two stimuli to treat cells on a device with easy observation is still a challenge. Therefore, we designed a multi-well device which can stimulate cells mechanically and electrically. Mouse skeletal C2C12 myoblasts were examined of their differentiation under mechanical and electrical stimulations. The MTT assay showed that high levels of electrical and cyclic stretching stimulations resulted in decreasing cell viability. Regading cell morphology, Cyclic stretching equal or higher 9% of strain promoted C2C12 cells to align perpendicular to the stretching direction. However, electrical stimulation did not affect cell alignment. When these two stimulations were simultaneously performed, cell alignment only depended on the stretching direction. Quantative PCR (qPCR) results showed that both stretching and electrical stimulations enhanced the expression of differentiation marker genes. The immunostaining of myosin heavy chain (MHC) protein also indicated that both stimulations effectively increased myotubes, and myotubes were aligned under stretching stimulation. Compared with sole electrical or stretching stimulation, the combination of electrical and stretching stimulations not only aligned myotubes, but also maintained or even upregulated myo-differentiation genes. These results all indicate that the combination application of electrical and stretching stimulations is a potential strategy for muscle tissue engineering.
關鍵字(中) ★ 電刺激
★ 機械刺激
★ 生物反應器
★ 小鼠骨骼成肌細胞
關鍵字(英) ★ electrical stimulation
★ mechanical stimulation
★ bioreactor
★ C2C12
論文目次 摘要 V
Abstract VI
致謝 VII
目錄 VIII
圖目錄 XI
表目錄 XIII
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 3
2-1 組織工程 3
2-1-1 骨骼肌組織工程 3
2-2 肌肉組織 5
2-2-1 肌肉構造與功能 6
2-2-2 肌肉細胞的分化與組織重建 8
2-3 影響肌肉細胞分化之因素 9
2-3-1 細胞排列(材料表面特徵) 10
2-3-2 機械刺激 11
2-3-3 電刺激 13
2-4 生醫材料 15
2-4-1 導電高分子 16
2-4-2 彈性高分子 17
2-5 生物刺激裝置 18
2-5-1 機械刺激裝置 19
2-5-2 電刺激裝置 22
2-5-3 多重刺激複合裝置 23
第三章 實驗藥品、儀器及方法 26
3-1 實驗藥品 26
3-1-1 材料製備藥品 26
3-1-2 生物實驗藥品 27
3-2 實驗儀器 34
3-3 實驗方法 37
3-3-1 設計、組裝生物刺激裝置 37
3-3-2 微接觸印刷 43
3-3-3 拉伸量測試 45
3-3-4 電阻量測 46
3-3-5 細胞培養、繼代、冷凍及解凍 46
3-3-6 分化血清配製及肌管分化 49
3-3-7 循環拉伸對肌管分化的影響 50
3-3-8 電刺激對肌管分化的影響 53
3-3-9 拉伸/電複合刺激對肌管分化的影響 54
3-3-10 物理刺激對生物活性之影響 56
3-3-11 MHC免疫螢光染色及分析 58
3-3-12 細胞排列分析 60
3-3-13 即時聚合酶反應儀 (Real-time PCR) 61
第四章 結果與討論 68
4-1 材料性質 68
4-1-1 ATR-FTIR分析 68
4-1-2 XRD分析 70
4-1-3 表面電阻量測 71
4-2 拉伸量測試 73
4-2-1 裝置拉伸能力之測試 73
4-3 電刺激對細胞之影響 78
4-3-1 MTT生物活性分析 78
4-3-2 電刺激對C2C12排列之影響 80
4-3-3 電刺激對C2C12分化之影響 84
4-4 循環拉伸對細胞之影響 94
4-4-1 MTT生物活性分析 94
4-4-2 循環拉伸對C2C12排列之影響 95
4-4-3 循環拉伸對C2C12分化之影響 99
4-5 拉伸/電複合刺激對細胞之影響 109
4-5-1 MTT生物活性分析 109
4-5-2 拉伸/電複合刺激對C2C12排列之影響 111
4-5-3 拉伸/電複合刺激對C2C12分化之影響 115
結論 131
參考文獻 133
參考文獻 1. Agrawal, G., Aung, A., and Varghese, S., Skeletal muscle-on-a-chip: an in vitro model to evaluate tissue formation and injury. Lab Chip, 2017. 17(20): 3447-3461.
2. Smith, A. S. T., Davis, J., Lee, G., Mack, D. L., and Kim, D.-H., Muscular dystrophy in a dish: engineered human skeletal muscle mimetics for disease modeling and drug discovery. Drug Discovery Today, 2016. 21(9): 1387-1398.
3. Esch, E. W., Bahinski, A., and Huh, D., Organs-on-chips at the frontiers of drug discovery. Nature Reviews Drug Discovery, 2015. 14(4): 248-260.
4. Goldman, S. M., Henderson, B. E. P., Walters, T. J., and Corona, B. T., Co-delivery of a laminin-111 supplemented hyaluronic acid based hydrogel with minced muscle graft in the treatment of volumetric muscle loss injury. PLoS One, 2018. 13(1): e0191245.
5. Dennis, R. G., Smith, B., Philp, A., Donnelly, K., and Baar, K., Bioreactors for guiding muscle tissue growth and development. Advances in Biochemical Engineering / Biotechnology, 2009. 112: 39-79.
6. Langer, R. and Vacanti, J. P., Tissue engineering. Science, 1993. 260(5110): 920-926.
7. Langer, R., Perspectives and challenges in tissue engineering and regenerative medicine. Advanced Materials, 2009. 21(32-33): 3235-3236.
8. Khademhosseini, A., Langer, R., Borenstein, J., and Vacanti, J. P., Microscale technologies for tissue engineering and biology. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(8): 2480-2487.
9. Lewis, M. R., RHYTHMICAL CONTRACTION OF THE SKELETAL MUSCLE TISSUE OBSERVED IN TISSUE CULTURES. American Journal of Physiology-Legacy Content, 1915. 38(1): 153-161.
10. Vandenburgh, H. and Kaufman, S., In vitro model for stretch-induced hypertrophy of skeletal muscle. Science, 1979. 203(4377): 265-268.
11. Strohman, R. C., Bayne, E., Spector, D., Obinata, T., Micou-Eastwood, J., and Maniotis, A., Myogenesis and histogenesis of skeletal muscle on flexible membranes in vitro. In Vitro Cellular & Developmental Biology, 1990. 26(2): 201-208.
12. Lam, M. T., Huang, Y.-C., Birla, R. K., and Takayama, S., Microfeature guided skeletal muscle tissue engineering for highly organized 3-dimensional free-standing constructs. Biomaterials, 2009. 30(6): 1150-1155.
13. Law, P. K., Goodwin, T. G., Fang, Q., Deering, M. B., Duggirala, V., Larkin, C., Florendo, J. A., Kirby, D. S., Li, H. J., Chen, M., Cornett, J., Li, L. M., Shirzad, A., Quinley, T., Yoo, T. J., and Holcomb, R., Cell transplantation as an experimental treatment for Duchenne muscular dystrophy. Cell Transplant, 1993. 2(6): 485-505.
14. Guettier-Sigrist, S., Coupin, G., Braun, S., Warter, J. M., and Poindron, P., Muscle could be the therapeutic target in SMA treatment. Journal of Neuroscience Research, 1998. 53(6): 663-669.
15. Klumpp, D., Horch, R. E., Kneser, U., and Beier, J. P., Engineering skeletal muscle tissue--new perspectives in vitro and in vivo. Journal of Cellular and Molecular Medicine, 2010. 14(11): 2622-2629.
16. Vandenburgh, H., Shansky, J., Benesch-Lee, F., Barbata, V., Reid, J., Thorrez, L., Valentini, R., and Crawford, G., Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve, 2008. 37(4): 438-447.
17. Vandenburgh, H., High-content drug screening with engineered musculoskeletal tissues. Tissue Engineering Part B: Reviews, 2010. 16(1): 55-64.
18. Akiyama, Y., Terada, R., Hashimoto, M., Hoshino, T., Furukawa, Y., and Morishima, K., Rod-shaped Tissue Engineered Skeletal Muscle with Artificial Anchors to Utilize as a Bio-Actuator. Journal of Biomechanical Science and Engineering, 2010. 5(3): 236-244.
19. Kim, J., Park, J., Yang, S., Baek, J., Kim, B., Lee, S. H., Yoon, E.-S., Chun, K., and Park, S., Establishment of a fabrication method for a long-term actuated hybrid cell robot. Lab Chip, 2007. 7(11): 1504-1508.
20. Ho, D. Engineering Intelligent Materials for the Interrogation of Bio-robotic Architectures and Regulatory Networks. in 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. 1849-1854.
21. Tuomisto, H. L. and Teixeira de Mattos, M. J., Environmental Impacts of Cultured Meat Production. Environmental Science & Technology, 2011. 45(14): 6117-6123.
22. Ostrovidov, S., Hosseini, V., Ahadian, S., Fujie, T., Parthiban, P., Ramalingam, M., Bae, H., Kaji, H., and Khademhosseini, A., Skeletal muscle tissue engineering: methods to form skeletal myotubes and their applications. Tissue Engineering Part B: Reviews, 2014. 20(5): 403-436.
23. Sosa, H., Popp, D., Ouyang, G., and Huxley, H. E., Ultrastructure of skeletal muscle fibers studied by a plunge quick freezing method: myofilament lengths. Biophysical Journal, 1994. 67(1): 283-292.
24. Singh, K. and Dilworth, F. J., Differential modulation of cell cycle progression distinguishes members of the myogenic regulatory factor family of transcription factors. The FEBS Journal, 2013. 280(17): 3991-4003.
25. Rudnicki, M. A., Schnegelsberg, P. N., Stead, R. H., Braun, T., Arnold, H.-H., and Jaenisch, R., MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 1993. 75(7): 1351-1359.
26. Halevy, O., Novitch, B. G., Spicer, D. B., Skapek, S. X., Rhee, J., Hannon, G. J., Beach, D., and Lassar, A. B., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science, 1995. 267(5200): 1018-1021.
27. Yee, S.-P. and Rigby, P. W. J., The regulation of myogenin gene expression during the embryonic development of the mouse. Genes & Development, 1993. 7(7a): 1277-1289.
28. Rhodes, S. J. and Konieczny, S. F., Identification of MRF4: a new member of the muscle regulatory factor gene family. Genes & Development, 1989. 3(12b): 2050-2061.
29. Andersen, J. I. Effects of cyclic tensile strain on the cytoskeletal arrangement and activation of focal adhesion kinase in murine myoblastic precursors, 2012.
30. Hynes, R. O., The extracellular matrix: not just pretty fibrils. Science, 2009. 326(5957): 1216-1219.
31. Schoen, I., Pruitt, B. L., and Vogel, V., The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials. Annual Review of Materials Research, 2013. 43(1): 589-618.
32. Ahadian, S., Ostrovidov, S., Hosseini, V., Kaji, H., Ramalingam, M., Bae, H., and Khademhosseini, A., Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis, 2013. 9(2): 87-92.
33. Liao, I. C., Liu, J. B., Bursac, N., and Leong, K. W., Effect of Electromechanical Stimulation on the Maturation of Myotubes on Aligned Electrospun Fibers. Cellular and molecular bioengineering, 2008. 1(2-3): 133-145.
34. Watt, F. M. and Huck, W. T., Role of the extracellular matrix in regulating stem cell fate. Nature Reviews Molecular Cell Biology, 2013. 14(8): 467-473.
35. Park, H., Bhalla, R., Saigal, R., Radisic, M., Watson, N., Langer, R., and Vunjak-Novakovic, G., Effects of electrical stimulation in C2C12 muscle constructs. Journal of Tissue Engineering and Regenerative Medicine, 2008. 2(5): 279-287.
36. Kloth, L. C., Electrical stimulation for wound healing: a review of evidence from in vitro studies, animal experiments, and clinical trials. The International Journal of Lower Extremity Wounds, 2005. 4(1): 23-44.
37. Nikkhah, M., Edalat, F., Manoucheri, S., and Khademhosseini, A., Engineering microscale topographies to control the cell-substrate interface. Biomaterials, 2012. 33(21): 5230-5246.
38. Suh, K. Y., Khademhosseini, A., Yang, J. M., Eng, G., and Langer, R., Soft Lithographic Patterning of Hyaluronic Acid on Hydrophilic Substrates Using Molding and Printing. Advanced Materials, 2004. 16(7): 584-588.
39. Zhao, Y., Zeng, H., Nam, J., and Agarwal, S., Fabrication of skeletal muscle constructs by topographic activation of cell alignment. Biotechnology and Bioengineering, 2009. 102(2): 624-631.
40. McDonald, J. C., Duffy, D. C., Anderson, J. R., Chiu, D. T., Wu, H., Schueller, O. J. A., and Whitesides, G. M., Fabrication of microfluidic systems in poly(dimethylsiloxane). ELECTROPHORESIS, 2000. 21(1): 27-40.
41. Rim, N. G., Yih, A., Hsi, P., Wang, Y., Zhang, Y., and Wong, J. Y., Micropatterned cell sheets as structural building blocks for biomimetic vascular patches. Biomaterials, 2018. 181: 126-139.
42. Wang, P.-Y., Yu, H.-T., and Tsai, W.-B., Modulation of alignment and differentiation of skeletal myoblasts by submicron ridges/grooves surface structure. Biotechnology and Bioengineering, 2010. 106(2): 285-294.
43. Aviss, K. J., Gough, J. E., and Downes, S., Aligned electrospun polymer fibres for skeletal muscle regeneration. European cells & materials, 2010. 19: 193-204.
44. Altman, G. H., Horan, R. L., Martin, I., Farhadi, J., Stark, P. R. H., Volloch, V., Richmond, J. C., Vunjak-Novakovic, G., and Kaplan, D. L., Cell differentiation by mechanical stress. The FASEB Journal, 2002. 16(2): 270-272.
45. Chandran, R., Knobloch, T. J., Anghelina, M., and Agarwal, S., Biomechanical signals upregulate myogenic gene induction in the presence or absence of inflammation. American Journal of Physiology-Cell Physiology, 2007. 293(1): C267-276.
46. van der Schaft, D. W. J., van Spreeuwel, A. C. C., van Assen, H. C., and Baaijens, F. P. T., Mechanoregulation of vascularization in aligned tissue-engineered muscle: a role for vascular endothelial growth factor. Tissue Engineering Part A 2011. 17(21-22): 2857-2865.
47. Pennisi, C. P., Olesen, C. G., de Zee, M., Rasmussen, J., and Zachar, V., Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Engineering Part A 2011. 17(19-20): 2543-2550.
48. Tamiello, C., Buskermolen, A. B. C., Baaijens, F. P. T., Broers, J. L. V., and Bouten, C., Heading in the Right Direction: Understanding Cellular Orientation Responses to Complex Biophysical Environments. Cellular and Molecular Bioengineering, 2016. 9: 12-37.
49. Yuan, X., Arkonac, D. E., Chao, P.-h. G., and Vunjak-Novakovic, G., Electrical stimulation enhances cell migration and integrative repair in the meniscus. Scientific Reports, 2014. 4: 3674.
50. Chang, K.-A., Kim, J. W., Kim, J. a., Lee, S., Kim, S., Suh, W. H., Kim, H.-S., Kwon, S., Kim, S. J., and Suh, Y.-H., Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells. PLoS One, 2011. 6(4): e18738.
51. McCaig, C. D., Song, B., and Rajnicek, A. M., Electrical dimensions in cell science. Journal of Cell Science, 2009. 122(23): 4267-4276.
52. Sagita, I. D., Whulanza, Y., Dhelika, R., and Nurhadi, I., Designing electrical stimulated bioreactors for nerve tissue engineering. AIP Conference Proceedings, 2018. 1933(1): 040019.
53. Nikolic, N., Bakke, S. S., Kase, E. T., Rudberg, I., Flo Halle, I., Rustan, A. C., Thoresen, H., and Aas, V., Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. PLoS One, 2012. 7(3): e33203.
54. Serena, E., Flaibani, M., Carnio, S., Boldrin, L., Vitiello, L., De Coppi, P., and Elvassore, N., Electrophysiologic stimulation improves myogenic potential of muscle precursor cells grown in a 3D collagen scaffold. Neurological Research, 2008. 30(2): 207-214.
55. Bach, A. D., Beier, J. P., Stern-Staeter, J., and Horch, R. E., Skeletal muscle tissue engineering. Journal of Cellular and Molecular Medicine, 2004. 8(4): 413-422.
56. Zengo, A. N., Bassett, C. A., Prountzos, G., Pawluk, R. J., and Pilla, A., In vivo effects of direct current in the mandible. Journal of Dental Research, 1976. 55(3): 383-390.
57. Schmidt, C. E., Shastri, V. P., Vacanti, J. P., and Langer, R., Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(17): 8948-8953.
58. Ostrovidov, S., Ahadian, S., Ramon-Azcon, J., Hosseini, V., Fujie, T., Parthiban, S. P., Shiku, H., Matsue, T., Kaji, H., Ramalingam, M., Bae, H., and Khademhosseini, A., Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017. 11(2): 582-595.
59. Jo, H., Sim, M., Kim, S., Yang, S., Yoo, Y., Park, J.-H., Yoon, T. H., Kim, M.-G., and Lee, J. Y., Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomaterialia, 2017. 48: 100-109.
60. Hudecki, A., Kiryczyński, G., and Łos, M. J., Chapter 7 - Biomaterials, Definition, Overview, in Stem Cells and Biomaterials for Regenerative Medicine, Marek J. Łos, Andrzej Hudecki, and Emilia Wiecheć, Editors. 2019, Academic Press. p. 85-98.
61. Guimard, N. K., Gomez, N., and Schmidt, C. E., Conducting polymers in biomedical engineering. Progress in Polymer Science, 2007. 32(8): 876-921.
62. El-Said, W. A., Yea, C.-H., Choi, J.-W., and Kwon, I.-K., Ultrathin polyaniline film coated on an indium–tin oxide cell-based chip for study of anticancer effect. Thin Solid Films, 2009. 518(2): 661-667.
63. Onoda, M., Abe, Y., and Tada, K., Experimental study of culture for mouse fibroblast used conductive polymer films. Thin Solid Films, 2010. 519: 1230-1234.
64. Mawad, D., Stewart, E., Officer, D. L., Romeo, T., Wagner, P., Wagner, K., and Wallace, G. G., A Single Component Conducting Polymer Hydrogel as a Scaffold for Tissue Engineering. Advanced Functional Materials, 2012. 22(13): 2692-2699.
65. Herbert, R., Kim, J.-H., Kim, Y.-S., Lee, H. M., and Yeo, W. H., Soft Material-Enabled, Flexible Hybrid Electronics for Medicine, Healthcare, and Human-Machine Interfaces. Materials (Basel), 2018. 11(2): 187.
66. Ostrovidov, S., Jiang, J., Sakai, Y., and Fujii, T., Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures. Biomed Microdevices, 2004. 6(4): 279-287.
67. Ostrovidov, S., Sakai, Y., and Fujii, T., Integration of a pump and an electrical sensor into a membrane-based PDMS microbioreactor for cell culture and drug testing. Biomed Microdevices, 2011. 13(5): 847-864.
68. Folch, A. and Toner, M., Microengineering of cellular interactions. Annual Review of Biomedical Engineering, 2000. 2: 227-256.
69. Huh, D., Hamilton, G. A., and Ingber, D. E., From 3D cell culture to organs-on-chips. Trends in Cell Biology, 2011. 21(12): 745-754.
70. van der Meer, A. D. and van den Berg, A., Organs-on-chips: breaking the in vitro impasse. Integrative Biology, 2012. 4(5): 461-470.
71. Brosig, M., Ferralli, J., Gelman, L., Chiquet, M., and Chiquet-Ehrismann, R., Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. The International Journal of Biochemistry & Cell Biology, 2010. 42(10): 1717-1728.
72. Mehta, G., Mehta, K., Sud, D., Song, J. W., Bersano-Begey, T., Futai, N., Heo, Y. S., Mycek, M.-A., Linderman, J. J., and Takayama, S., Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices, 2007. 9(2): 123-134.
73. Jang, K.-J., Cho, H. S., Kang, D. H., Bae, W.-G., Kwon, T.-H., and Suh, K.-Y., Fluid-shear-stress-induced translocation of aquaporin-2 and reorganization of actin cytoskeleton in renal tubular epithelial cells. Integrative Biology, 2011. 3(2): 134-141.
74. Michielin, F., Serena, E., Pavan, P., and Elvassore, N., Microfluidic-assisted cyclic mechanical stimulation affects cellular membrane integrity in a human muscular dystrophy in vitro model. RSC Advances, 2015. 5(119): 98429-98439.
75. Wu, M.-H., Wang, H.-Y., Liu, H.-L., Wang, S.-S., Liu, Y.-T., Chen, Y.-M., Tsai, S.-W., and Lin, C.-L., Development of high-throughput perfusion-based microbioreactor platform capable of providing tunable dynamic tensile loading to cells and its application for the study of bovine articular chondrocytes. Biomed Microdevices, 2011. 13(4): 789-798.
76. Zheng, W., Jiang, B., Wang, D., Zhang, W., Wang, Z., and Jiang, X., A microfluidic flow-stretch chip for investigating blood vessel biomechanics. Lab Chip, 2012. 12(18): 3441-3450.
77. K, R., Kar, G. P., Bose, S., and Basu, B., Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. RSC Advances, 2016. 6(13): 10837-10845.
78. Yan, L., Zhao, B., Liu, X., Li, X., Zeng, C., Shi, H., Xu, X., Lin, T., Dai, L., and Liu, Y., Aligned Nanofibers from Polypyrrole/Graphene as Electrodes for Regeneration of Optic Nerve via Electrical Stimulation. ACS Applied Materials & Interfaces, 2016. 8(11): 6834-6840.
79. Hosseini, V., Gantenbein, S., Avalos Vizcarra, I., Schoen, I., and Vogel, V., Stretchable Silver Nanowire Microelectrodes for Combined Mechanical and Electrical Stimulation of Cells. Advanced Healthcare Materials, 2016. 5(16): 2045-2054.
80. Yoon, J.-K., Lee, T. I., Bhang, S. H., Shin, J.-Y., Myoung, J.-M., and Kim, B.-S., Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2017. 9(27): 22101-22111.
81. Kim, S. J., Cho, K. W., Cho, H. R., Wang, L., Park, S. Y., Lee, S. E., Hyeon, T., Lu, N., Choi, S. H., and Kim, D.-H., Stretchable and Transparent Biointerface Using Cell-Sheet–Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle. Advanced Functional Materials, 2016. 26(19): 3207-3217.
82. Heher, P., Maleiner, B., Pruller, J., Teuschl, A. H., Kollmitzer, J., Monforte, X., Wolbank, S., Redl, H., Runzler, D., and Fuchs, C., A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia, 2015. 24: 251-265.
83. Yang, J.-H., Song, Y., Seol, J.-H., Park, J. Y., Yang, Y.-J., Han, J.-W., Youn, H.-D., and Cho, E.-J., Myogenic transcriptional activation of MyoD mediated by replication-independent histone deposition. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(1): 85-90.
84. Hollenberg, S. M., Cheng, P. F., and Weintraub, H., Use of a conditional MyoD transcription factor in studies of MyoD trans-activation and muscle determination. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(17): 8028-8032.
85. Lau, P., Nixon, S. J., Parton, R. G., and Muscat, G. E. O., RORalpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells: caveolin-3 and CPT-1 are direct targets of ROR. The Journal of Biological Chemistry, 2004. 279(35): 36828-36840.
86. Ahadian, S., Banan Sadeghian, R., Yaginuma, S., Ramon-Azcon, J., Nashimoto, Y., Liang, X., Bae, H., Nakajima, K., Shiku, H., Matsue, T., Nakayama, K. S., and Khademhosseini, A., Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour. Biomaterials Science, 2015. 3(11): 1449-1458.
87. 楊士永, 搭建可提供電刺激與機械刺激之生物反應器. 2018.
88. Bao, C., Xu, K.-Q., Tang, C.-Y., Lau, W.-m., Yin, C.-B., Zhu, Y., Mei, J., Lee, J., Hui, D., Nie, H.-Y., and Liu, Y., Cross-Linking the Surface of Cured Polydimethylsiloxane via Hyperthemal Hydrogen Projectile Bombardment. ACS Applied Materials & Interfaces, 2015. 7(16): 8515-8524.
89. Pan, T. J., Zuo, X. W., Wang, T., Hu, J., Chen, Z. D., and Ren, Y. J., Electrodeposited conductive polypyrrole/polyaniline composite film for the corrosion protection of copper bipolar plates in proton exchange membrane fuel cells. Journal of Power Sources, 2016. 302: 180-188.
90. Ferreira, P., Carvalho, Á., Correia, T. R., Antunes, B. P., Correia, I. J., and Alves, P., Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses. Science and technology of advanced materials, 2013. 14(5): 055006.
91. Hu, J., Li, Y., Gao, G., and Xia, S., A Mediated BOD Biosensor Based on Immobilized B. Subtilis on Three-Dimensional Porous Graphene-Polypyrrole Composite. Sensors (Basel), 2017. 17(11): 2594.
92. Charest, J. L., Garcia, A. s. J., and King, W. P., Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials, 2007. 28(13): 2202-2210.
93. Puri, P. L., Medaglia, S., Cimino, L., Maselli, C., Germani, A., De Marzio, E., Levrero, M., and Balsano, C., Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. Journal of Cellular Biochemistry, 1997. 66(1): 27-36.
94. Lyons, G. E., Muhlebach, S., Moser, A., Masood, R., Paterson, B. M., Buckingham, M. E., and Perriard, J.-c., Developmental regulation of creatine kinase gene expression by myogenic factors in embryonic mouse and chick skeletal muscle. Development, 1991. 113(3): 1017-1029.
95. Bandman, E., Contractile protein isoforms in muscle development. Developmental Biology, 1992. 154(2): 273-283.
96. Vafiadaki, E., Arvanitis, D. A., and Sanoudou, D., Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene, 2015. 566(1): 1-7.
97. Ludolph, D. C. and Konieczny, S. F., Transcription factor families: muscling in on the myogenic program. The FASEB Journal, 1995. 9(15): 1595-1604.
98. Yoshida, N., Yoshida, S., Koishi, K., Masuda, K., and Nabeshima, Y.-i., Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ′reserve cells′. Journal of Cell Science, 1998. 111(6): 769-779.
99. Goldyn, A. M., Rioja, B. A., Spatz, J. P., Ballestrem, C., and Kemkemer, R., Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. Journal of Cell Science, 2009. 122(20): 3644-3651.
100. Feng, Y., Tian, X.-Y., Sun, P., Cheng, Z.-P., and Shi, R.-F., Simultaneous Study of Mechanical Stretch-Induced Cell Proliferation and Apoptosis on C2C12 Myoblasts. Cells Tissues Organs, 2018. 205(4): 189-196.
101. Pavesi, A., Adriani, G., Rasponi, M., Zervantonakis, I. K., Fiore, G. B., and Kamm, R. D., Controlled electromechanical cell stimulation on-a-chip. Scientific Reports, 2015. 5: 11800.
102. Wang, B., Wang, G., To, F., Butler, J. R., Claude, A., McLaughlin, R. M., Williams, L. N., de Jongh Curry, A. L., and Liao, J., Myocardial scaffold-based cardiac tissue engineering: application of coordinated mechanical and electrical stimulations. Langmuir, 2013. 29(35): 11109-11117.
103. Kim, H., Kim, M.-C., and Asada, H. H., Extracellular matrix remodelling induced by alternating electrical and mechanical stimulations increases the contraction of engineered skeletal muscle tissues. Scientific Reports, 2019. 9(1): 2732.
104. Zengo, A., Bassett, C., Prountzos, G., Pawluk, R., and Pilla, A., In vivo effects of direct current in the mandible. Journal of dental research, 1976. 55(3): 383-390.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2019-12-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明