博碩士論文 106223058 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.147.81.172
姓名 陳以青(Yi-Ching Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Density Functional Theory Investigation of Thermal Degradation Pathways of CH3NH3PbI3 Perovskite)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來鈣鈦礦材料由於其高能量轉換效率引起許多研究學者關注,而methylammonium lead iodide (CH3NH3PbI3, MAPbI3) 被認為是極具潛力的鈣鈦礦材料,然而化學穩定性是該材料應用於太陽能電池上必須面臨的一大挑戰。有許多文獻研究了熱分解反應的機制且提供了兩種可能的熱分解反應路徑,兩種路徑之間的差異就在於碘離子反應的對象,碘離子和CH3NH3+中N上的H反應生成HI及CH3NH2,而跟C反應則會得到CH3I以及NH3。本研究利用密度泛函理論 (Density Functional Theory, DFT) 計算MAPbI3不同熱分解反應過程中構型及位能的變化,並且建立了兩套計算模型模擬實際熱分解過程,分別為氣體模型以及晶格模型。在氣體模型中我們發現反應較容易生成HI及CH3NH2,因為反應的初始結構透過Boltzmann distribution的計算發現在氣態狀態下碘離子是無法直接與C反應,所以我們推斷在氣體模型中主要的熱分解產物是HI及CH3NH2;接著透過晶格的模型計算我們發現晶格的環境可以同時提供兩種反應位向,而且兩種反應的活化能是相似的,意味著在晶格模型中MAPbI3兩種熱分解反應都會發生。我們的研究提供了純粹的晶格環境來去探討分解的機制。本研究目的是了解MAPbI3熱分解機制並希望能夠提供相關研究學者一些參考去設計具有良好熱穩定性的鈣鈦礦太陽能電池。
摘要(英) The poor stability of organometallic halide perovskite, especially the CH3NH3PbI3 (MAPbI3), in high temperature environment is one of the challenge problems retarding for its wide applications. The thermal degradation mechanism of MAPbI3 perovskite remains unclear. In this study, we employ firstprinciple density functional theory to investigate the thermal degradation mechanisms of MAPbI3 perovskite. We focus on studying the two reaction pathways of iodine with the CH3NH3+: one reaction is the proton abstraction reaction from methylammonium to iodine and the products are hydrogen iodide (HI) and methylamine (CH3NH2). The other reaction is a substituent reaction (SN2) using the iodine as the nucleophile to attack the carbon atom of CH3NH3+ to yield the products of iodomethane (CH3I) and ammonia (NH3). Our calculations based on crystal structure of MAPbI3 perovskite provides an kinetics data under an “environment-free” conditions allowing us to assess the “intrinsic” (in)stability of MAPbI3 perovskite under heat stress. Our calculations show the SN2 reaction is a two-step one, where the CH3-I-Pb-X intermediate formed in crystal after the release of NH3 gas. In addition, both pathways have comparable activation energy indicating that extrinsic factors could lead to different degradation pathways.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 熱穩定性
★ 熱分解
關鍵字(英)
論文目次 摘要 i
Abstract ii
Contents iii
List of figures iv
Chapter 1 - Introduction 1
Chapter 2 - Computational Methods 6
Chapter 3 - Results and Discussion 10
3.1 P1 Reaction Pathway of I-MA and PbI3-MA 10
3.2 P2 Reaction Pathway of I-MA and PbI3-MA 14
3.3 P1 Reaction Pathway of MAPbI3-Crystal 20
3.4 P2 Reaction Pathway of MAPbI3-Crystal 22
Chapter 4 - Conclusion 26
References 27
Supporting information 30
參考文獻 1. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131 (17), 6050-+.
2. Green, M. A.; Hishikawa, Y.; Dunlop, E. D.; Levi, D. H.; Hohl-Ebinger, J.; Ho-Baillie, A. W. Y., Solar cell efficiency tables (version 52). Prog. Photovoltaics 2018, 26 (7), 427-436.
3. Boix, P. P.; Nonomura, K.; Mathews, N.; Mhaisalkar, S. G., Current progress and future perspectives for organic/inorganic perovskite solar cells. Materials Today 2014, 17 (1), 16-23.
4. Heo, J. H.; Song, D. H.; Patil, B. R.; Im, S. H., Recent Progress of Innovative Perovskite Hybrid Solar Cells. Israel Journal of Chemistry 2015, 55 (9), 966-977.
5. Ciccioli, A.; Latini, A., Thermodynamics and the intrinsic stability of lead halide perovskites CH3NH3PbX3. The journal of physical chemistry letters 2018, 9 (13), 3756-3765.
6. Brunetti, B.; Cavallo, C.; Ciccioli, A.; Gigli, G.; Latini, A., On the thermal and thermodynamic (in) stability of methylammonium lead halide perovskites. Scientific reports 2016, 6, 31896.
7. Niu, G. D.; Guo, X. D.; Wang, L. D., Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 2015, 3 (17), 8970-8980.
8. Wang, Z.; Shi, Z. J.; Li, T. T.; Chen, Y. H.; Huang, W., Stability of Perovskite Solar Cells: A Prospective on the Substitution of the ACation and XAnion. Angewandte Chemie-International Edition 2017, 56 (5), 1190-1212.
9. Han, Y.; Meyer, S.; Dkhissi, Y.; Weber, K.; Pringle, J. M.; Bach, U.; Spiccia, L.; Cheng, Y. B., Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. Journal of Materials Chemistry A 2015, 3 (15), 8139-8147.
10. Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D′Haen, J.; D′Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; De Angelis, F.; Boyen, H. G., Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite. Advanced Energy Materials 2015, 5 (15).
11. Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G., Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties. Inorganic Chemistry 2013, 52 (15), 9019-9038.
12. Dualeh, A.; Gao, P.; Seok, S. I.; Nazeeruddin, M. K.; Graetzel, M., Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvesters. Chem. Mat. 2014, 26 (21), 6160-6164.
13. Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L., Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. Acs Nano 2015, 9 (2), 1955-1963.
14. Philippe, B.; Park, B. W.; Lindblad, R.; Oscarsson, J.; Ahmadi, S.; Johansson, E. M. J.; Rensmo, H., Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures-A Photoelectron Spectroscopy Investigation. Chem. Mat. 2015, 27 (5), 1720-1731.
15. Manser, J. S.; Saidaminov, M. I.; Christians, J. A.; Bakr, O. M.; Kamat, P. V., Making and Breaking of Lead Halide Perovskites. Accounts of Chemical Research 2016, 49 (2), 330-338.
16. Pisoni, A.; Jacimovic, J.; Barisic, O. S.; Spina, M.; Gaal, R.; Forro, L.; Horvath, E., Ultra-Low Thermal Conductivity in Organic-Inorganic Hybrid Perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 2014, 5 (14), 2488-2492.
17. Shirayama, M.; Kato, M.; Miyadera, T.; Sugita, T.; Fujiseki, T.; Hara, S.; Kadowaki, H.; Murata, D.; Chikamatsu, M.; Fujiwara, H., Degradation mechanism of CH3NH3PbI3 perovskite materials upon exposure to humid air. Journal of Applied Physics 2016, 119 (11).
18. Juarez-Perez, E. J.; Hawash, Z.; Raga, S. R.; Ono, L. K.; Qi, Y. B., Thermal degradation of CH3NH3PbI3 perovskite into NH3 and CH3I gases observed by coupled thermogravimetry-mass spectrometry analysis. Energy Environ. Sci. 2016, 9 (11), 3406-3410.
19. Nenon, D. P.; Christians, J. A.; Wheeler, L. M.; Blackburn, J. L.; Sanehira, E. M.; Dou, B. J.; Olsen, M. L.; Zhu, K.; Berrya, J. J.; Luther, J. M., Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy Environ. Sci. 2016, 9 (6), 2072-2082.
20. Latini, A.; Gigli, G.; Ciccioli, A., A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH 3 NH 3 PbI 3: an attempt to rationalise contradictory experimental results. Sustainable Energy & Fuels 2017, 1 (6), 1351-1357.
21. Xu, W.; Liu, L.; Yang, L.; Shen, P.; Sun, B.; McLeod, J. A., Dissociation of Methylammonium Cations in Hybrid Organic-Inorganic Perovskite Solar Cells. Nano Lett. 2016, 16, 4720.
22. Jung, M. C.; Lee, Y. M.; Lee, H. K.; Park, J.; Raga, S. R.; Ono, L. K.; Wang, S.; Leyden, M. R.; Yu, B. D.; Hong, S., The Presence of CH3NH2 Neutral Species in Organometal Halide Perovskite Films. Appl. Phys. Lett. 2016, 108, 073901.
23. Nenon, D. P.; Christians, J. A.; Wheeler, L. M.; Blackburn, J. L.; Sanehira, E. M.; Dou, B.; Olsen, M. L.; Zhu, K.; Berry, J. J.; Luther, J. M., Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy Environ. Sci. 2016, 9 (6), 2072-2082.
24. McLeod, J. A.; Liu, L., Prospects for Mitigating Intrinsic Organic Decomposition in Methylammonium Lead Triiodide Perovskite. The Journal of Physical Chemistry Letters 2018, 9 (9), 2411-2417.
25. Haruyama, J.; Sodeyama, K.; Han, L. Y.; Tateyama, Y., Termination Dependence of Tetragonal CH3NH3PbI3 Surfaces for Perovskite Solar Cells. J. Phys. Chem. Lett. 2014, 5 (16), 2903-2909.
26. Wang, Y.; Sumpter, B. G.; Huang, J. S.; Zhang, H. M.; Liu, P. R.; Yang, H. G.; Zhao, H. J., Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH3NH3PbI3. Journal of Physical Chemistry C 2015, 119 (2), 1136-1145.
27. Ren, Y. X.; Oswald, I. W. H.; Wang, X. P.; McCandless, G. T.; Chan, J. Y., Orientation of Organic Cations in Hybrid Inorganic-Organic Perovskite CH3NH3PbI3 from Subatomic Resolution Single Crystal Neutron Diffraction Structural Studies. Crystal Growth & Design 2016, 16 (5), 2945-2951.
28. Motta, C.; El-Mellouhi, F.; Kais, S.; Tabet, N.; Alharbi, F.; Sanvito, S., Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 2015, 6, 7.
29. Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. Physical Review B 1976, 13 (12), 5188-5192.
30. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.
31. Delley, B., An All-Electron Numerical-Method for Solving the Local Density Functional for Polyatomic-Molecules. Journal of Chemical Physics 1990, 92 (1), 508-517.
32. Delley, B., From molecules to solids with the DMol(3) approach. Journal of Chemical Physics 2000, 113 (18), 7756-7764.
33. Tkatchenko, A.; Scheffler, M., Accurate Molecular van der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102 (7), 4.
指導教授 蔡惠旭 審核日期 2019-12-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明