博碩士論文 106329022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.145.100.144
姓名 黃俞瑄(Yu-Hsuan Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鉍摻雜之矽化鎂熱電材料性能之分析
(Thermoelectric Properties of Bi-Doped magnesium silicide (Mg2Si))
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 歸因於最近的能源危機,研究人員一直致力於尋找更好的能源安排方式,特別是通過提高能源系統效率。熱電發電機具有將廢熱轉化為電能的優點,在此方面是為一強力的候選者。過去常見的熱電材料有Bi2Te3、PbTe-BiTe,而比較新興的熱電材料有Mg2Si N-type 、Mn2Si P-type 、方鈷礦 Skutterudites CoSb等等,在本研究中,考慮到低成本與環保的好處,我們嘗試合成鉍、鎂和矽作為材料系統製作熱電材料。
本研究是將在經過滾動式研磨機充分混合的粉體,通過在氬氣氛下在爐管中進行固態反應法反應,製備不同比例的鉍摻雜矽化鎂化合物(Mg2Si+Bix,X=0.01, 0.02, 0.03),為增加其載子濃度,以達到電導的提升。隨後在研磨和篩選緻密化後進行火花電漿燒結(SPS)。另外也透過急冷旋鑄法為縮小其晶粒大小,以降低其熱導。
量測的部分通過X光繞射分析和SEM測量並觀察完整樣品的組成和微觀結構。通過雷射閃光法熱傳導分析儀(LFA)、阿基米德、ZEM-3和示差掃描熱分析儀(DSC)研究熱電性能,以獲得包括熱導係數,電導率和 Seebeck 係數等參數,經過計算以獲得最終的數字和熱電優值ZT。本研究在鉍摻雜0.02的部分,擁有熱電優質 ZT=0.384。最終目標是製造高 ZT 值的矽化鎂化合物,以作為具有高性能轉換效率的熱電材料應用。
摘要(英) Since the recent energy crisis, researchers have dedicated in searching for a better way to utilize energy, especially by increasing energy system efficiency. Thermoelectric generators might be the predominant candidate, owing to its ability of transferring waste heat into electric power. In this work, taking the benefits of low costing and eco-friendly, we attempt to synthesis bismuth, magnesium, and silicon were selected as the material system. Bi-doped magnesium silicide compounds were prepared by reacting in tube furnace under argon atmosphere after mixing them all with the rolling machine. Spark plasma sintering (SPS) was later operated after grinding and screening for densification. In addition, we also try to decrease the grain size by melt spinning. The composition and microstructure of complete sample were measured and observed by using X-ray diffraction and SEM, respectively. The thermoelectric properties were be studied by laser flash analysis (LFA), Archimedes, ZEM-3, and differential scanning calorimeters (DSC) to obtain the parameter including thermal conductivity, electrical conductivity, and Seebeck coefficient in order to get the final figure and merit ZT. The final goal is to fabricate the high-ZT magnesium silicide that possesses high performance for energy applications.
關鍵字(中) ★ 矽化鎂化合物
★ 熱電性質
★ 鉍
★ 急冷旋鑄
關鍵字(英) ★ Magnesium silicide
★ Thermoelectric properties
★ Bismuth
★ Melt spinning
論文目次 摘要 I
ABSTRACT II
致謝 III
圖目錄 VII
表目錄 IX
第一章、緒論 1
1-1 前言 1
1-2 熱電材料的起源 1
1-3 熱電材料的原理與應用 3
1-4 研究目的 5
第二章、文獻回顧 7
2-1 熱電效應概述 7
2-1-1 Seebeck 效應 8
2-1-2 Peltier 效應 10
2-1-3 Thomson 效應 11
2-2 電導率 12
2-3 熱傳導率 13
2-4 WIEDEMANN-FRANZ 定律 15
2-5 熱電優值(FIGURE OF MERIT) 15
2-6 鎂基熱電材料(MAGNESIUM-BASED THERMOELECTRIC MATERIALS) 17
2-6-1 鎂基熱電材料晶體結構 17
2-6-2 鎂基熱電材料特性 17
2-6-3 鎂基熱電材料之熱電性質改良 19
第三章、實驗程序與方法 22
3-1 矽化鎂塊材製備 22
3-1-1 起始原料 22
3-1-2 固態反應法(Solid state reaction) 22
3-1-3 急冷旋鑄法(Melt spinning)製備薄帶狀矽化鎂 23
3-1-4 研磨與過篩(Pulverised) 23
3-1-5 火花電漿燒結成型(Spark plasma sintering) 24
3-2 材料結構分析 25
3-2-1 X光繞射分析(XRD) 25
3-2-2 掃描式電子顯微鏡分析(SEM) 25
3-3 材料熱電性質分析 26
3-3-1 試片製備 26
3-3-2 Seebeck係數與電導率量測 26
3-3-3 熱傳導率量測 27
第四章、實驗結果與討論 37
4-1 鎂含量對矽化鎂相之成相影響 37
4-2 火花電漿燒結之溫度選擇 38
4-3材料基本性質分析 40
4-3-1 XRD 分析 40
4-3-2 掃描式電子顯微鏡分析(SEM) 44
4-4 熱電性質分析 46
4-4-1 熱導率 46
4-4-2 電導率 50
第五章、結論 55
第六章、未來展望 56
參考文獻 57
參考文獻 [1] T.J. Seebeck, “Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1823).
[2] http://tns.ndhu.edu.tw/~ykkuo/thermoelectric.pdf
[3] J.C. Peltier, “Nouvelles expériences sur la caloricité des courans électrique,” Annales de Chimie et de Physique, 56, 371(1834)
[4] http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history
[5] H.J. Goldsmd, R.W. Dougl, “The use of semiconductors in thermoelectric refrigeration”, British Journal Applied Physics, 5, 386 (1954).
[6] https://ejournal.stpi.narl.org.tw/sd/download?source=1020609.pdf&vlId=B6846D84-150C-4DB5-BFBE-59E2D8B370B2&nd=1&ds=1
[7] https://chem.au.dk/forskning/forskningscentre/center-for-materials-crystallography/research/energy-materials/thermoelectrics/
[8] R. Santos, S.A. Yamini, S.X. Dou, “Recent progress in magnesium-based thermoelectric materials.” Journal of Materials Chemistry A, 6(8), 3328–3341(2018).
[9] W.M. Yim, F.D. Rosi, “Compound tellurides and their alloys for. Peltier cooling-a review”, Solid State Electronics, 15, pp.1121-1140, (1972).
[10] Y. Noda, M. Orihashi, I.A. Nishida, “Preparation and thermoelectric properties of Ag or K doped PbTe”, Mater Trans JIM , 39, pp.602-605, (1998).
[11] J.L. Harringa, B.A. Cook “Application of hot isostatic pressing for.consolidation of n-type silicon-germanium alloys prepared by mechanical alloying”, Mater Sci Eng B, 60, pp. 137–142, (1999).
[12] X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, “A review of thermoelectrics research – recent developments and potentials for sustainable and renewable energy applications”, Renewable and sustainable energy reviews, 32, pp.486-503, (2014).
[13] S. Twaha, J. Zhu, Y. Yan, B. Li. ”A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement.” Renewable and Sustainable Energy Reviews, 65, 698–726(2016)
[14] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect”, Nature, 455, pp.778-781, (2008).
[15] T.M. Tritt, “Thermoelectric phenomena materials, and. applications”, Annu. Rev. Mater. Res., 41, pp.433-448, (2011).
[16] https://www.itsfun.com.tw/%E7%86%B1%E9%9B%BB%E6%95%88%E6%87%89/wiki-6134906-9341885
[17] https://www.qsstudy.com/physics/explain-seebeck-effect
[18] https://www.mn.uio.no/fysikk/english/research/projects/bate/thermoelectricity/
[19] https://www.itread01.com/content/1544751246.html
[20] https://www.studyadda.com/notes/jee-main advanced/physics/current-electricity-charging-discharging-of-capacitors/peltier-effect/8183
[21] https://www.easyatm.com.tw/wiki/%E7%86%B1%E9%9B%BB
[22] http://letslearnnepal.com/class-12/physics/electricity/thermometric-effect/thomsons-effect/
[23] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced materials, 19, pp.1043-1053, (2007).
[24] N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, “Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe”, Nano Letters, Vol. 9, No. 2, pp.711-715, (2009).
[25] A.F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling", Infosearch, London, (1957).
[26] A. Shakouri, “Recent developments in semiconductor. thermoelectric physics and materials”, Annu. Rev. Mater. Res., 41, pp.399-431, (2011).
[27] D.M. Rowe, ed., Handbook of thermoelectrics, Boca Raton: CRC, (1995).
[28] R. Morris, R. Redin and G. Danielson, Phys. Rev., 09, 1909–1915(1958)
[29] M.W. Heller and G.C. Danielson, J. Phys. Chem. Solids, 23, 601–610.(1962)
[30] P. Boulet, M.J. Verstraete, J.P. Crocombette, M. Briki and M.C. Record, Comput. Mater. Sci., 50, 847–851.(2011)
[31] K. Kutorasinski, B. Wiendlocha, J. Tobola and S. Kaprzyk, Phys. Rev. B: Condens. Matter Mater. Phys., 89, 8.(2014)
[32] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin and M.V. Vedernikov, Phys. Rev. B: Condens. Matter Mater. Phys., 74, 045207.(2006)
[33] H.L. Gao, T.J. Zhu, X. B. Zhao and Y. Deng, Intermetallics, 56, 33–36.(2015)
[34] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin and M. V. Vedernikov, 2005 International Conference on Thermoelectrics, p. 7.(2005)
[35] W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang and C. Uher, Phys. Rev. Lett., 108.(2012)
[36] D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC. Press, Taylor & Francis Group, Boca Raton, FL, 1st edn, (2006).
[37] P. Gao, I. Berkun, R.D. Schmidt, M.F. Luzenski, X. Lu, P. Bordon. Sarac, E. D. Case and T. P. Hogan, J. Electron. Mater., 43, 1790–1803.(2013)
[38] S. Ganeshan, S. L. Shang, Y. Wang and Z. K. Liu, J. Alloys Compd., 498, 191–198(2010)
[39] K. Yin, X. Su, Y. Yan, Y. You, Q. Zhang, C. Uher, M. G. Kanatzidis. and X. Tang, Chem. Mater., 28, 5538–5548.(2016)
[40] S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder and S.W. Kim, Science, 348, 109–114.(2015)
[41] D. Wu, L.-D. Zhao, X. Tong, W. Li, L. Wu, Q. Tan, Y. Pei, L. Huang, J.F. Li, Y. Zhu, M. G. Kanatzidis and J. He, Energy Environ. Sci., 8, 2056–2068.(2015)
[42] Q. Zhang, X. Li, Y. Kang, L. Zhang, D. Yu, J. He, Z. Liu, Y. Tian. and B. Xu, J. Mater. Sci.: Mater. Electron., 26, 385–391.(2014)
[43] Y. Gelbstein, J. Davidow, S. N. Girard, D. Y. Chung and M. Kanatzidis, Adv. Energy Mater., 3, 815–820.(2013)
[44] S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar and R. C. Budhani, Appl. Phys. Lett., 101, 213902.(2012)
[45] H.J. Goldsmid, “Introduction to Thermoelectricity”, Springer, 2nd. edn, (2016).
[46] V.K. Zaitsev, M.I. Fedorov, I.S. Eremin and E.A. Gurieva, in. Thermoelectrics Handbook: Macro to Nano, ed. D. M. Rowe, CRC Press, Boca Raton, FL, USA, ch. 29.(2006)
[47] S. Wang and N. Mingo, Appl. Phys. Lett., 94, 203109.(2009)
[48] N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. R. Salvador. and H. Kleinke, J. Electron. Mater., 45, 6052–6058.(2016)
[49] Q. Zhang, J. He, X. B. Zhao, S. N. Zhang, T. J. Zhu, H. Yin and T. M. Tritt, J. Phys. D: Appl. Phys., 41, 185103.(2008)
[50] X. Wang and Z. M. Wang, Nanoscale Thermoelectrics, Springer, (2014).
[51] 周雅文,「火花電漿燒結技術於熱電材料開發之應用」,工業材料雜 誌,287期,2010年11月。
[52] D.A. Ditmars, S. Ishihara, S.S. Chang, and G. Bernstein, “Enthalpy. and heat-capacity standard reference material : synthetic sapphire (α-Al2O3) from 10 to 2250 K ”, JOURNAL OF RESEARCH of the National Bureou of Standards, Vol.87, No. 2, pp. 159-163,(1982).
[53] A. Kolezynski, P. Nieroda, P. Jelen, M. Sitarz, and K.T. Wojciechowski. “Theoretical and experimental spectroscopic studies of Bi dopant location in Mg2Si.” Vibrational Spectroscopy, 76, 31–37.(2005)
[54] M. Rull-Bravo, A. Moure, J.F. Fernández, and M. Martín-González, “Skutterudites as thermoelectric materials: revisited.” RSC Advances, 5(52), 41653–41667.(2005)
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2019-10-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明