參考文獻 |
[1] T.J. Seebeck, “Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1823).
[2] http://tns.ndhu.edu.tw/~ykkuo/thermoelectric.pdf
[3] J.C. Peltier, “Nouvelles expériences sur la caloricité des courans électrique,” Annales de Chimie et de Physique, 56, 371(1834)
[4] http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history
[5] H.J. Goldsmd, R.W. Dougl, “The use of semiconductors in thermoelectric refrigeration”, British Journal Applied Physics, 5, 386 (1954).
[6] https://ejournal.stpi.narl.org.tw/sd/download?source=1020609.pdf&vlId=B6846D84-150C-4DB5-BFBE-59E2D8B370B2&nd=1&ds=1
[7] https://chem.au.dk/forskning/forskningscentre/center-for-materials-crystallography/research/energy-materials/thermoelectrics/
[8] R. Santos, S.A. Yamini, S.X. Dou, “Recent progress in magnesium-based thermoelectric materials.” Journal of Materials Chemistry A, 6(8), 3328–3341(2018).
[9] W.M. Yim, F.D. Rosi, “Compound tellurides and their alloys for. Peltier cooling-a review”, Solid State Electronics, 15, pp.1121-1140, (1972).
[10] Y. Noda, M. Orihashi, I.A. Nishida, “Preparation and thermoelectric properties of Ag or K doped PbTe”, Mater Trans JIM , 39, pp.602-605, (1998).
[11] J.L. Harringa, B.A. Cook “Application of hot isostatic pressing for.consolidation of n-type silicon-germanium alloys prepared by mechanical alloying”, Mater Sci Eng B, 60, pp. 137–142, (1999).
[12] X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, “A review of thermoelectrics research – recent developments and potentials for sustainable and renewable energy applications”, Renewable and sustainable energy reviews, 32, pp.486-503, (2014).
[13] S. Twaha, J. Zhu, Y. Yan, B. Li. ”A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement.” Renewable and Sustainable Energy Reviews, 65, 698–726(2016)
[14] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect”, Nature, 455, pp.778-781, (2008).
[15] T.M. Tritt, “Thermoelectric phenomena materials, and. applications”, Annu. Rev. Mater. Res., 41, pp.433-448, (2011).
[16] https://www.itsfun.com.tw/%E7%86%B1%E9%9B%BB%E6%95%88%E6%87%89/wiki-6134906-9341885
[17] https://www.qsstudy.com/physics/explain-seebeck-effect
[18] https://www.mn.uio.no/fysikk/english/research/projects/bate/thermoelectricity/
[19] https://www.itread01.com/content/1544751246.html
[20] https://www.studyadda.com/notes/jee-main advanced/physics/current-electricity-charging-discharging-of-capacitors/peltier-effect/8183
[21] https://www.easyatm.com.tw/wiki/%E7%86%B1%E9%9B%BB
[22] http://letslearnnepal.com/class-12/physics/electricity/thermometric-effect/thomsons-effect/
[23] M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced materials, 19, pp.1043-1053, (2007).
[24] N. Mingo, D. Hauser, N.P. Kobayashi, M. Plissonnier, and A. Shakouri, “Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe”, Nano Letters, Vol. 9, No. 2, pp.711-715, (2009).
[25] A.F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling", Infosearch, London, (1957).
[26] A. Shakouri, “Recent developments in semiconductor. thermoelectric physics and materials”, Annu. Rev. Mater. Res., 41, pp.399-431, (2011).
[27] D.M. Rowe, ed., Handbook of thermoelectrics, Boca Raton: CRC, (1995).
[28] R. Morris, R. Redin and G. Danielson, Phys. Rev., 09, 1909–1915(1958)
[29] M.W. Heller and G.C. Danielson, J. Phys. Chem. Solids, 23, 601–610.(1962)
[30] P. Boulet, M.J. Verstraete, J.P. Crocombette, M. Briki and M.C. Record, Comput. Mater. Sci., 50, 847–851.(2011)
[31] K. Kutorasinski, B. Wiendlocha, J. Tobola and S. Kaprzyk, Phys. Rev. B: Condens. Matter Mater. Phys., 89, 8.(2014)
[32] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin and M.V. Vedernikov, Phys. Rev. B: Condens. Matter Mater. Phys., 74, 045207.(2006)
[33] H.L. Gao, T.J. Zhu, X. B. Zhao and Y. Deng, Intermetallics, 56, 33–36.(2015)
[34] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin and M. V. Vedernikov, 2005 International Conference on Thermoelectrics, p. 7.(2005)
[35] W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang and C. Uher, Phys. Rev. Lett., 108.(2012)
[36] D.M. Rowe, Thermoelectrics Handbook: Macro to Nano, CRC. Press, Taylor & Francis Group, Boca Raton, FL, 1st edn, (2006).
[37] P. Gao, I. Berkun, R.D. Schmidt, M.F. Luzenski, X. Lu, P. Bordon. Sarac, E. D. Case and T. P. Hogan, J. Electron. Mater., 43, 1790–1803.(2013)
[38] S. Ganeshan, S. L. Shang, Y. Wang and Z. K. Liu, J. Alloys Compd., 498, 191–198(2010)
[39] K. Yin, X. Su, Y. Yan, Y. You, Q. Zhang, C. Uher, M. G. Kanatzidis. and X. Tang, Chem. Mater., 28, 5538–5548.(2016)
[40] S.I. Kim, K.H. Lee, H.A. Mun, H.S. Kim, S.W. Hwang, J.W. Roh, D.J. Yang, W.H. Shin, X.S. Li, Y.H. Lee, G.J. Snyder and S.W. Kim, Science, 348, 109–114.(2015)
[41] D. Wu, L.-D. Zhao, X. Tong, W. Li, L. Wu, Q. Tan, Y. Pei, L. Huang, J.F. Li, Y. Zhu, M. G. Kanatzidis and J. He, Energy Environ. Sci., 8, 2056–2068.(2015)
[42] Q. Zhang, X. Li, Y. Kang, L. Zhang, D. Yu, J. He, Z. Liu, Y. Tian. and B. Xu, J. Mater. Sci.: Mater. Electron., 26, 385–391.(2014)
[43] Y. Gelbstein, J. Davidow, S. N. Girard, D. Y. Chung and M. Kanatzidis, Adv. Energy Mater., 3, 815–820.(2013)
[44] S. Bathula, M. Jayasimhadri, N. Singh, A. K. Srivastava, J. Pulikkotil, A. Dhar and R. C. Budhani, Appl. Phys. Lett., 101, 213902.(2012)
[45] H.J. Goldsmid, “Introduction to Thermoelectricity”, Springer, 2nd. edn, (2016).
[46] V.K. Zaitsev, M.I. Fedorov, I.S. Eremin and E.A. Gurieva, in. Thermoelectrics Handbook: Macro to Nano, ed. D. M. Rowe, CRC Press, Boca Raton, FL, USA, ch. 29.(2006)
[47] S. Wang and N. Mingo, Appl. Phys. Lett., 94, 203109.(2009)
[48] N. Farahi, S. Prabhudev, M. Bugnet, G. A. Botton, J. R. Salvador. and H. Kleinke, J. Electron. Mater., 45, 6052–6058.(2016)
[49] Q. Zhang, J. He, X. B. Zhao, S. N. Zhang, T. J. Zhu, H. Yin and T. M. Tritt, J. Phys. D: Appl. Phys., 41, 185103.(2008)
[50] X. Wang and Z. M. Wang, Nanoscale Thermoelectrics, Springer, (2014).
[51] 周雅文,「火花電漿燒結技術於熱電材料開發之應用」,工業材料雜 誌,287期,2010年11月。
[52] D.A. Ditmars, S. Ishihara, S.S. Chang, and G. Bernstein, “Enthalpy. and heat-capacity standard reference material : synthetic sapphire (α-Al2O3) from 10 to 2250 K ”, JOURNAL OF RESEARCH of the National Bureou of Standards, Vol.87, No. 2, pp. 159-163,(1982).
[53] A. Kolezynski, P. Nieroda, P. Jelen, M. Sitarz, and K.T. Wojciechowski. “Theoretical and experimental spectroscopic studies of Bi dopant location in Mg2Si.” Vibrational Spectroscopy, 76, 31–37.(2005)
[54] M. Rull-Bravo, A. Moure, J.F. Fernández, and M. Martín-González, “Skutterudites as thermoelectric materials: revisited.” RSC Advances, 5(52), 41653–41667.(2005) |