博碩士論文 106329013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.118.31.67
姓名 林緯昀(Wei-Yun Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 奈米纖維化陰極應用於質子傳輸型固態氧化物燃料電池
(Nanofibrous cathodes for proton-conducting solid oxide fuel cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用靜電紡絲技術製備La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)陰極及BaCe0.6Zr0.2Y0.2O3-δ (BCZY)電解質奈米纖維,再將兩者與傳統陰極和電解質粉末混合,製作成質子傳輸型固態氧化物燃料電池之陰極;測量不同混合參數的電池性能(極化曲線)及電化學交流阻抗頻譜,探討陰極端中氣體、氧離子、質子與電子的反應機制。
針對電化學交流阻抗頻譜進行深入分析,以瞭解不同陰極結構在質子傳輸型固態氧化物燃料電池中的反應差異,藉此了解何種材料組合能為電池性能帶來提升。此外,本研究還進行陰極氣體加濕,觀察加濕前後,電池性能的變化與電化學交流阻抗之改變,以瞭解含水氣的空氣對陰極內部反應有何影響。
使用LSCF奈米纖維與純BCZY粉末製成混合陰極時,全電池於800 ℃下測得最佳效能:開路電壓為0.93 V、功率密度峰值為212.5 mW/cm2;因LSCF奈米纖維比純粉末擁有更多和氣體反應的面積,能大幅縮短氣體擴散進入陰極之距離,更能形成氧離子與電子傳輸網路,而不受為非電子導體的BCZY電解質粉末干擾。
摘要(英) The composite cathodes of proton-conducting solid oxide fuel cells (P-SOFC) were fabricated by mixing of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber, BaCe0.6Zr0.2Y0.2O3-δ (BCZY) nanofiber, LSCF powder, or BCZY powder. The measurements of cell performance (I-V curve) and electrochemical impedance spectroscopy (EIS) were performed to investigate the chemical reaction mechanism between cathodes, gas, oxygen ions, protons, and electrons. Cell performance were also tested under humidified gas on the cathodes and to investigate the variations of chemical reactions.
The cell with the cathode which is composed of LSCF nanofiber and BCZY powder showed the best performance: 0.93 V for the open circuit voltage (OCV) and 212.5 mW/cm2 for the power density at 800 ℃. The LSCF nanofiber has lager reactive area for gas which can substantially reduce the distance of gas diffusion and forming the “conducting network” for oxygen ions and electrons.
關鍵字(中) ★ 靜電紡絲
★ 奈米纖維
★ 質子傳輸型固態氧化物燃料電池
★ 陰極
★ 電化學交流阻抗
關鍵字(英) ★ nanofiber
★ P-SOFC
★ cathode
★ EIS
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 viii
第一章、 前言 1
第二章、 實驗原理與文獻回顧 3
2.1 固態氧化物燃料電池(SOFC) 3
2.1.1 SOFC之原理 3
2.1.2 SOFC之優點 5
2.1.3 SOFC之結構 6
2.2 SOFC之電解質材料 7
2.2.1 螢石結構(Fluorite) 7
2.2.2 鈣鈦礦結構(Perovskite) 8
2.2.3 質子傳輸型電解質 10
2.2.4 質子傳輸 10
2.3 電解質製備 11
2.3.1 固態反應法(Solid-state reaction) 11
2.3.2 溶膠-凝膠法(Sol-gel method) 11
2.4 SOFC全電池製備相關製程 12
2.4.1 刮刀成型(Tape casting) 12
2.4.2 旋轉塗佈(Spin coating) 12
2.4.3 靜電紡絲(Nanofiber electrospinning) 13
2.4.4 乾壓成型(Dry pressing) 14
2.4.5 電子束蒸鍍(Electron beam coating) 15
2.4.6 雷射脈衝沉積(Pulse laser deposition) 15
2.5 粉末燒結 16
2.5.1 燒結過程 16
2.5.2 燒結擴散機制 17
2.6 電化學分析 17
2.6.1 極化曲線(I-V curve) 17
2.6.2 電化學交流阻抗頻譜 19
2.6.3 等效電路 20
第三章、 實驗方法 22
3.1 實驗藥品 22
3.2 實驗流程 22
3.2.1 BaCe0.6Zr0.2Y0.2O3-δ粉末製備 22
3.2.2 陽極基板製備 23
3.2.3 奈米纖維(Nanofiber)製備 23
3.2.4 全電池製備 24
3.3 材料性質分析 24
3.3.1 X光繞射分析(X-ray diffraction) 24
3.3.2 掃描式電子顯微鏡(Scanning electron microscope) 25
3.4 電池特性分析 25
3.4.1 電池I-V性能量測 25
3.4.2 電化學交流阻抗量測 26
第四章、 結果與討論 27
4.1 材料性質分析 27
4.1.1 合成粉末分析 27
4.1.2 微結構分析 30
4.2 全電池之I-V性能曲線測量與分析 34
4.3 全電池之EIS測量與分析 38
4.4 陰極端氣體加濕之性能測量 41
第五章、 結論 49
第六章、 參考文獻 50
參考文獻 [1] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, 1839.
[2] Y. A. Cengel, “Thermodynamics: An Engineering Approach”, 7th Edition, McGraw-Hill, USA, 2010.
[3] G. Hoogers, “Fuel Cell Technology Handbook”, 1st Edition, CRC Press, USA, 2002.
[4] 黃鎮江,“燃料電池”,二版,全華圖書股份有限公司,新北市,民國九十四年。
[5] A. L. Lee, R. F. Zabransky, and W. J. Huber, “Internal reforming development for solid oxide fuel cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, 1990.
[6] L. M. Zhang and W. S. Yang, “Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, 2008.
[7] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni- BaCe0.9Y0.1O3-δ anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, 2011.
[8] B. H. Rainwater, M. F. Liu, and M. L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[9] L. Bi, E. Fabbri, and E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, 2012.
[10] K. Xie, R. Q. Yan, and X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, 2009.
[11] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, and H. S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, Vol. 33, pp. 2826-2833, 2008.
[12] Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, and S. M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, 2007.
[13] C. A. J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A molecular dynamics study”, Solid State Ionics, Vol. 177, pp. 3425-3431, 2007.
[14] W. Zhou, R. Ran, Z. P. Shao, R. Cai, W. Q. Jin, N. P. Xu, and J. M. Ahn, “Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, 2008.
[15] B. Wei, Z. Lü, X.Q. Huang, J. P. Miao, X. Q. Sha, X. S. Xin, and W. H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, 2006.
[16] H. Inaba and H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, Vol. 83, pp.1-16, 1996.
[17] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, Journal of Materials Science, Vol. 36, pp. 1149-1160, 2001.
[18] A. Arabacı and M. F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceramics International, Vol. 38, pp. 6509-6515, 2012.
[19] L. P. Li and J. C. Nino, “Ionic conductivity across the disorder-order phase transition in the SmO1.5-CeO2 system”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, 2012.
[20] S. Demic, A. N. Ozcivan, M. Can, C. Ozbek, and M. Karakaya, “Recent Progresses in Perovskite Solar Cells”, Nanostructured Solar Cells, IntechOpen, UK, 2017.
[21] T. Takahashi and H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Conversion, Vol. 11, pp. 105-111, 1971.
[22] K. D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, 2003.
[23] E. Traversa and E. Fabbri, “Proton conductors for solid oxide fuel cells (SOFCs)”, Functional Materials for Sustainable Energy Applications, 1st Edition, Woodhead Publishing, UK, 2012.
[24] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, Vol. 244, pp. 456-462, 1995.
[25] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, Journal of Materials Chemistry, Vol. 10, pp. 1027-1038, 2000.
[26] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, 2000.
[27] K. H. Ryu and S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355-367, 1999.
[28] R. B. Cervera, Y. Oyama, and S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3-δ by sol-gel method”, Solid State Ionics, Vol. 178, pp. 569-574, 2007.
[29] Z. R. Wang, J. Q. Qian, J. D. Cao, S. R. Wang, and T. L. Wen, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)”, Journal of Alloys and Compounds, Vol. 437, pp. 264-268, 2007.
[30] T. O. Mason, “Advanced ceramics”, Encyclopædia Britannica, USA, 2016.
[31] J. M. Serra and W. A. Meulenberg, “Thin‐Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate‐Temperature Solid Oxide Fuel Cell Alternative”, Journal of the American Ceramic Society, Vol. 90, pp. 2082-2089, 2007.
[32] D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Advanced Materials, Vol. 16, pp. 1151-1170, 2004.
[33] X. B. Zhu, Z. Lü, B. Wei, X. Q. Huang, Y. H. Zhang, and W. H. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196, pp. 729-733, 2011.
[34] D. Konwar, B. J. Park, P. Basumatary, and H. H. Yoon, “Enhanced performance of solid oxide fuel cells using BaZr0.2Ce0.7Y0.1O3-δ thin films”, Journal of Power Sources, Vol. 353, pp. 254-259, 2017.
[35] H. S. Noh, K. J. Yoon, B. K. Kim, H. J. Je, H. W. Lee, J. H. Lee, and J. W. Son, “The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells”, Journal of Power Sources, Vol. 247, pp. 105-111, 2014.
[36] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, Journal of Applied Physics, Vol. 32, pp. 787, 1961.
[37] M. F. Ashby, “A first report on sintering diagrams Dlagrammes de frittage (premier article) Ein erster bericht über sinterdlagramme”, Acta Metallurgica, Vol. 22, pp. 275-289, 1974.
[38] EG & G Technical Services Inc., “Fuel Cell Handbook”, 7th Edition, Department of Energy, USA, 2004.
[39] E. Povoden-Karadeniz, “Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells”, Swiss Federal Institute of Technology Zurich, degree of doctor, 2008.
[40] N. Y. Hsu, S. C. Yen, K. T. Jeng, and C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal Power Sources, Vol. 161, pp. 232-239, 2006.
[41] L. Yang, Z. Liu, S. Z. Wang, Y. M. Choi, C. D. Zuo, and M. L. Liu, “A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors”, Journal of Power Sources, Vol. 195, pp. 471-474, 2010.
[42] R. R. Peng, T. Z. Wu, W. Liu, X. Q. Liu, and G. Y. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry, Vol. 20, pp. 6218-6225, 2010.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2019-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明