參考文獻 |
[1] W. R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine Series 3, Vol. 14, pp. 127-130, 1839.
[2] Y. A. Cengel, “Thermodynamics: An Engineering Approach”, 7th Edition, McGraw-Hill, USA, 2010.
[3] G. Hoogers, “Fuel Cell Technology Handbook”, 1st Edition, CRC Press, USA, 2002.
[4] 黃鎮江,“燃料電池”,二版,全華圖書股份有限公司,新北市,民國九十四年。
[5] A. L. Lee, R. F. Zabransky, and W. J. Huber, “Internal reforming development for solid oxide fuel cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, 1990.
[6] L. M. Zhang and W. S. Yang, “Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, 2008.
[7] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni- BaCe0.9Y0.1O3-δ anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, 2011.
[8] B. H. Rainwater, M. F. Liu, and M. L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[9] L. Bi, E. Fabbri, and E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, 2012.
[10] K. Xie, R. Q. Yan, and X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, 2009.
[11] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, and H. S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, Vol. 33, pp. 2826-2833, 2008.
[12] Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, and S. M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, 2007.
[13] C. A. J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A molecular dynamics study”, Solid State Ionics, Vol. 177, pp. 3425-3431, 2007.
[14] W. Zhou, R. Ran, Z. P. Shao, R. Cai, W. Q. Jin, N. P. Xu, and J. M. Ahn, “Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, 2008.
[15] B. Wei, Z. Lü, X.Q. Huang, J. P. Miao, X. Q. Sha, X. S. Xin, and W. H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, 2006.
[16] H. Inaba and H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, Vol. 83, pp.1-16, 1996.
[17] S. M. Haile, G. Staneff, and K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, Journal of Materials Science, Vol. 36, pp. 1149-1160, 2001.
[18] A. Arabacı and M. F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceramics International, Vol. 38, pp. 6509-6515, 2012.
[19] L. P. Li and J. C. Nino, “Ionic conductivity across the disorder-order phase transition in the SmO1.5-CeO2 system”, Journal of the European Ceramic Society, Vol. 32, pp. 3543-3550, 2012.
[20] S. Demic, A. N. Ozcivan, M. Can, C. Ozbek, and M. Karakaya, “Recent Progresses in Perovskite Solar Cells”, Nanostructured Solar Cells, IntechOpen, UK, 2017.
[21] T. Takahashi and H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Conversion, Vol. 11, pp. 105-111, 1971.
[22] K. D. Kreuer, “Proton-conducting Oxides”, Annual Review of Materials Research, Vol. 33, pp. 333-359, 2003.
[23] E. Traversa and E. Fabbri, “Proton conductors for solid oxide fuel cells (SOFCs)”, Functional Materials for Sustainable Energy Applications, 1st Edition, Woodhead Publishing, UK, 2012.
[24] N. Agmon, “The Grotthuss mechanism”, Chemical Physics Letters, Vol. 244, pp. 456-462, 1995.
[25] M. Saiful Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, Journal of Materials Chemistry, Vol. 10, pp. 1027-1038, 2000.
[26] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, 2000.
[27] K. H. Ryu and S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355-367, 1999.
[28] R. B. Cervera, Y. Oyama, and S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3-δ by sol-gel method”, Solid State Ionics, Vol. 178, pp. 569-574, 2007.
[29] Z. R. Wang, J. Q. Qian, J. D. Cao, S. R. Wang, and T. L. Wen, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)”, Journal of Alloys and Compounds, Vol. 437, pp. 264-268, 2007.
[30] T. O. Mason, “Advanced ceramics”, Encyclopædia Britannica, USA, 2016.
[31] J. M. Serra and W. A. Meulenberg, “Thin‐Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate‐Temperature Solid Oxide Fuel Cell Alternative”, Journal of the American Ceramic Society, Vol. 90, pp. 2082-2089, 2007.
[32] D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Advanced Materials, Vol. 16, pp. 1151-1170, 2004.
[33] X. B. Zhu, Z. Lü, B. Wei, X. Q. Huang, Y. H. Zhang, and W. H. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196, pp. 729-733, 2011.
[34] D. Konwar, B. J. Park, P. Basumatary, and H. H. Yoon, “Enhanced performance of solid oxide fuel cells using BaZr0.2Ce0.7Y0.1O3-δ thin films”, Journal of Power Sources, Vol. 353, pp. 254-259, 2017.
[35] H. S. Noh, K. J. Yoon, B. K. Kim, H. J. Je, H. W. Lee, J. H. Lee, and J. W. Son, “The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells”, Journal of Power Sources, Vol. 247, pp. 105-111, 2014.
[36] R. L. Coble, “Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models”, Journal of Applied Physics, Vol. 32, pp. 787, 1961.
[37] M. F. Ashby, “A first report on sintering diagrams Dlagrammes de frittage (premier article) Ein erster bericht über sinterdlagramme”, Acta Metallurgica, Vol. 22, pp. 275-289, 1974.
[38] EG & G Technical Services Inc., “Fuel Cell Handbook”, 7th Edition, Department of Energy, USA, 2004.
[39] E. Povoden-Karadeniz, “Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells”, Swiss Federal Institute of Technology Zurich, degree of doctor, 2008.
[40] N. Y. Hsu, S. C. Yen, K. T. Jeng, and C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal Power Sources, Vol. 161, pp. 232-239, 2006.
[41] L. Yang, Z. Liu, S. Z. Wang, Y. M. Choi, C. D. Zuo, and M. L. Liu, “A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors”, Journal of Power Sources, Vol. 195, pp. 471-474, 2010.
[42] R. R. Peng, T. Z. Wu, W. Liu, X. Q. Liu, and G. Y. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry, Vol. 20, pp. 6218-6225, 2010. |