博碩士論文 103388001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.116.50.87
姓名 莊哲瑋(Jhe-Wei Jhuang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 中低溫固態氧化物燃料電池電解質傳導機制探討與高性能電池開發
(Transportation mechanism and high performance research for intermedium-low temperature solid oxide fuel cell electrolyte)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-1-1以後開放)
摘要(中) 本研究中,第一部分鎖定傳統之固態氧化物燃料電池電解質改質,進而強化電解質之化學穩定性,以展現固態氧化物燃料電池燃料選擇性廣之優點。故於此部分,本研究設計新式抗毒化手法,並進行毒化前後之相鑑定、導電度量測及碳酸鋇生成位置鑑定,進而了解相穩定性、表面毒化覆蓋狀況與電解質導電性之關聯性。另外,與藉由摻雜鋯來提升電解質化學穩定性之手法進行比較,分析不同抗毒化手法之效果。
由研究結果顯示,此新式保護法,氧化鈰(Cerium oxide, CeO2)保護法,是藉由1600 oC高溫燒結之固態反應法,使電解質表面自然生成CeO2,為電解質提供保護作用,抑制二氧化碳毒化反應發生,並維持電解質表面離子通道,進而維持電池電化學性能。由電解質導電性毒化前後之比對結果也可發現,無CeO2保護法之鋇鈰釔氧化物電解質經二氧化碳毒化後,導電度衰退率高達56%,而有CeO2保護法之鋇鈰釔氧化物電解質經二氧化碳毒化後,導電度衰退率僅有7%,說明CeO2於電解質表面能有效防止導電度之衰退。另外也配合相穩定性研究(XRD)及毒化物與表面生成位置分析(拉曼光譜mapping)之結果可發現,為維持電解質性能不受二氧化碳毒化所影響,除維持鈣鈦礦結構之相穩定性外,保護表面質子傳導路徑不受非離子導體之碳酸鋇阻絕也為重要的因素之一。
第二部分研究,主要探討材料之晶體結構對電解質質子導電性之影響,進而做為未來材料改質優化之依據。由研究結果可知,材料可藉由不同量測氣氛,分析材料不同之離子傳導性。而不同離子傳導性則會受不同因素影響,如鋇鈰氧化物於空氣下之導電性主要受到氧離子傳導性之影響,故隨著鋯摻雜比例提升,會造成樣品晶粒變小,導致晶界阻抗上升使導電性下降。而氫氣下之質子導性則較為複雜,會受自由體積與載子濃度等因素影響,需藉由準確判斷材料之晶體結構、自由體積、載子濃度與遷移率才能分析材料質子傳導性,而此部分成功將EBSD應用於鈣鈦礦結構陶瓷材料晶體結構鑑定,成功分析不同鋯摻雜比例之樣品晶體結構,進而計算其晶體常數、自由體積等數值,並將晶體相關參數結果與質子導電性結果做連結。
最後單層燃料電池之設計成功於本研究應用,單層燃料電池為一將燃料電池陽極/陰極/電解質功能混合成單一中間層材料之燃料電池,藉由三合一混合的效果,免去電極與電解質層中間之異質介面,並縮短離子傳遞距離,進而使電池性能大幅上升。另外,中間層(混合陽極/陰極/電解質功能之材料)也鎳發泡材於雙邊固定,提供電池機械強度,並製作肖特基結,防止電子短路現象發生。最後本研究設計同時擁有三傳導性(電子/氧離子/質子)材料(鋇鈷鐵鋯釔氧化物, BaCo0.4Fe0.4Zr0.1Y0.1O3),作為單層燃料電池之中間層材料,藉由整合單層燃料電池與三傳導性材料之特,進而大幅增加燃料電池反應面積,提升單層燃料電池性能,並藉由三導體材料混合不同離子導體,調整中間層材料之導電性,成功製備於低溫下擁有高性能之燃料電池(於0.6 V 550 oC時之電流密度提升至1.2 A/cm2)。
摘要(英) This first part of study investigated the decline in the conductivity and mechanical strength after CO2 poisoning and found a new protective method for BaZrxCe0.8-xY0.2O3 (BCZY) proton-conducting electrolyte. The high temperature solid state reaction (SSR) was used in synthesizing electrolyte to naturally generate CeO2 on the surface. A comparison of the oxides in the conductivity decline test revealed that the sample with CeO2 on the surface substantially improved the stability of conductivity, reducing the decline ratio from 56% to 7% for BCY and 50% to 7% for BCZY. Raman mapping results indicate the naturally generated CeO2 on electrolyte surface can considerably reduce impurity formation and maintain the microstructure of electrolyte. This work demonstrates that samples with CeO2 on the surface effectively protect the BaCeO3-based proton-conducting electrolyte from CO2 poisoning. This method may be applied to similar BaCeO3-based perovskite materials as a new protective method.
The second part of study, we vary the Ce to Zr ratio to investigate the microstructure and electrical property of zirconium doped barium cerate. The solid state reaction is used in synthesizing the BaCe0.8-xZrxY0.2O3 (BCZY0.1~0.5, x= 0.1~0.5). The electron backscatter diffraction (EBSD) is successfully applied to identify the crystal structure of barium cerate. EBSD results indicate that all samples maintain orthorhombic structure. Conductivity measurement results show that for temperatures below 700 oC, Zr-doped barium cerate has higher proton conductivity than oxygen ion conductivity. The protonic conductivity increases with the Zr ratio initially, but decreases after the Zr ratio is higher than 0.3. For stable operation in CO2 atmosphere, Zr ratio of barium cerates should be greater than 0.2.
The last part of study, we build up the single layer fuel cell (SLFC). The BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1) is be chosen as SLFC electrolyte materials in this study. Because BCFZY has been discovered as “triple conducting” cathode material, i.e. simultaneous proton, oxygen-ion and electron-hole conductivity. In comparison to the conventional mixed oxide ion and electron/hole conducting cathode, the triple-conducting BCFZY0.1 cathode may eliminate the three-phase-boundary constraints, which makes the entire cathode electrochemically active and be suitable for low temperatures SLFC. Additionally, the SLFC based on the Schottky type using perovskite BCFZY0.1 material is mixed with BaCe0.8Y0.2O3-δ (BCY) and Sm0.15Ce0.85O2-δ-Na2CO3 (NSDC) to modify electronic and ionic conductivities. Finally, the high performance SLFC have been found as 80% BCFZY mixing with 20% BZY (BCFZY0.1+20BZY). The BCFZY0.1+20BZY reach 1.2 A/cm2@0.6 V at 550 oC.
關鍵字(中) ★ 固態氧化物燃料電池
★ 質子傳導性電解質
★ 鈣鈦礦結構
★ 離子導電性
★ 晶體結構
★ 單層燃料電池
關鍵字(英) ★ Solid oxide fuel cell
★ Proton-conducting electrolyte
★ Perovskite structure
★ Ionic conductivity
★ Crystal structure
★ Single layer fuel cell
論文目次 中文摘要 I
Abstract IV
致謝 VI
目錄 VIII
圖目錄 X
表目錄 XI
第一章 研究背景與目的 1
1-1 緒論 1
第二章 文獻回顧 7
2-1 固態氧化物燃料電池特性及工作原理 7
2-2 固態氧化物燃料電池陽極材料 9
2-3 固態氧化物燃料電池陰極材料 13
2-4 固態氧化物燃料電池連結板 15
2-5 固態氧化物燃料電池電解質材料 16
2-5.1 螢石結構 (Fluorite) 16
2-5.2 鈣鈦狀結構 (Perovskite) 18
2-5.3 鋇鈰氧系(BaCeO3-based)電解質 20
2-6 單層燃料電池 21
2-7 燃料電池的極化現象 23
2-7.1 活化極化 (Activation polarization,ηact ) 24
2-7.2 歐姆極化(Ohmic polarization,ηohm) 25
2-7.3 濃差極化(Concentration polarization,ηconc) 25
2-8 研究目的 26
第三章 實驗方法與步驟 28
3-1 氧化鈰保護法 28
3-1.1 樣品配置 29
3-1.2 特性分析參數與儀器 30
3-2 鋯摻雜對鋇鈰釔氧化物之影響 31
3-2.1 樣品製備 32
3-2.2 特性分析參數與儀器 33
3-3 BaCo0.4Fe0.4Zr0.1Y0.1O3-δ(BCFZY):調整三傳導性(H+/O2-/e-)優化於低溫單層燃料電池性能之研究 33
3-3.1 樣品製備 34
3-3.2 電池組裝 36
3-3.3 電池測試 37
第四章 結果與討論 39
4-1 氧化鈰保護法 39
4-1.1 氧化鈰生成參數探討 39
4-1.2 二氧化碳毒化對電解質之影響 42
4-1.3 導電度分析 44
4-1.4 拉曼光譜分析 46
4-1.5 機械硬度分析 49
4-1.6 氧化鈰保護法-小結 51
4-2 鋯摻雜對鋇鈰釔氧化物之影響 52
4-2.1 不同鋯摻雜比例樣品合成成功與否確認 52
4-2.1 材料晶粒大小量測 53
4-2.2 離子導電性解析及驗證 54
4-2.3 晶體結構鑑定 56
4-2.4 化學穩定性量測 63
4-2.5 鋯摻雜對鋇鈰釔氧化物之影響小結 64
4-3 BaCo0.4Fe0.4Zr0.1Y0.1O3-δ(BCFZY):調整三傳導/性(H+/O2-/e-)優化於低溫單層燃料電池性能之研究 65
4-3.1 材料相鑑定 65
4-3.2 晶粒大小量測與分析 67
4-3.3 混合離子導體之電池性能測試 68
4-3.4 混合離子導體導電度量測 69
第五章 結論 74
第六章 未來工作 77
第七章 參考文獻 79
參考文獻 [1] https://www.nies.go.jp/event/cop/cop21/20151204.html
[2] 溫室氣體減量及管理法
[3] http://web3.moeaboe.gov.tw/ecw/populace/content/ContentLink.aspx?menu_id=378
[4] 黃鎮江, 燃料電池, Vol. 3, 滄海書局, 2008.
[5] Z. Shao, S.M. Halle, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431, 170-173 (2004)
[6] S.C. Singhal, K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier, 2003
[7] S. Mclntosh, R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., 104, 4845-4866 (2004)
[8] E. Fontell, T. Kivisaari, N. Christiansen, J.B. Hansen, J. Palsson, “Conceptual study of a 250 kW planar SOFC system for CHP application”, J. Power Sources, 131, 49-56 (2004)
[9] https://www.energytrend.com.tw/news/20180817-14311425.html
[10] L. Bi, S. Boulfrad, E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chem. Soc. Rev., 43, 8255-8270 (2014)
[11] http://www.tuwenba.com/content/MDE3NjUyM3zgz.html
[12] http://info.taiwantrade.com/CH/bizsearchdetail/6333728/C/1
[13] A. Tugirumubano, H.J. Shin, S.H. Go, M.S. Lee, L.K. Kwac, H.G. Kim, “Electrochemical performance analysis of a PEM water electrolysis with cathode feed mode based on flow passage shape of titanium plates”, Int. J. Precis. Eng. Man., 17, 1073-1078 (2016)
[14] F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources”, Solar Energy, 78, 661-669 (2005)
[15] J.M. Spurgeon, N.S. Lewis, “Proton exchange membrane electrolysis sustained by water vapor”, Energy Environ. Sci., 4, 2993-2998 (2011)
[16] S.A. Grigoriev, V.I. Porembsky, V.N. Fateev, “Pure hydrogen production by PEM electrolysis for hydrogen energy”, Int. J. Hydrogen Energy, 31, 171-175 (2006)
[17] A.H. Mamaghani, B. Najafi, A. Casalegno, F. Rinaldi, “Long-term economic analysis and optimization of an HT-PEM fuel cell based micro combined heat and power plant”, Appl. Therm. Eng., 99, 1201-1211 (2016)
[18] A. Arabacı, M.F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceram. Int. 38, 6509-6515 (2012)
[19] K. Xie, R.Q. Yan, and X.Q. Liu, “A Novel Anode Supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ Electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochem. Commun., 11, 1618-1622 (2009)
[20] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, Int. J. Hydrogen Energy, 33, 2826-2833 (2008)
[21] K.V. Galloway and N.M. Sammes, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering”, Encyclopedia of Electrochem. Power Sources, 17-24 (2009)
[22] J. Rossmeisl, W.G. Bessler, “Trends in catalytic activity for SOFC anode materials”, Solid State Ionics, 178, 1694-1700 (2008)
[23] B.H. Rainwater, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Int. J. Hydrogen Energy, 37, 18342-18348 (2012)
[24] W.Z. Zhu and S.C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Mater. Sci. Eng., A, 362, 228-239 (2003)
[25] B.C.H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 oC”, Solid State Ionics, 129, 95-110 (2000)
[26] J.J. Haslam, A.Q. Pham, B.W. Chung, J.F> DiCarlo, and R.S. Glass, “Effect of the use of pore formers on performance of an anode supported solid oxide fuel cell”, J. Am. Ceram. Soc., 88, 513-518 (2005)
[27] F. Zhao, and A.V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, J. Power Sources, 141, 79-95 (2005)
[28] C. Sun, and U. Stimming, “Recent anode advances in solid oxide fuel cells”, J. Power Sources, 171, 247-260 (2007)
[29] S. Mclntosh, R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., 104, 4845-4865 (2004)
[30] A. Essoumhi, G. Taillades, M. Taillades-Jacquin, D.J. Jones and J. Roziere, “Synthesis and characterization of Ni-cermet/proton conducting thin film electrolyte symmetrical assemblies”, Solid State Ionics, 179, 2155-2159 (2008)
[31] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu, “H2S solid fuel cell based on a modified barium cerate perovskite proton conductor”, Ionics, 15, 385-388 (2009)
[32] E. Ivers-Tiffee, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering”, Encyclopedia of Electrochem. Power Sources, 2, 181-187 (2009)
[33] N.M. Sammes, B.R. Roy, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering”, Encyclopedia of Electrochem. Power Sources, 25-33 (2009)
[34] B. Wei, Z. Lu, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, and W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3-δ(0.3≦x≦0.7)”, J. Eur. Ceram. Soc., 26, 2827-2832 (2006)
[35] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for anode-supported proton-conducting solid-oxide fuel cell”, J. Power Sources, 180, 15-22 (2008)
[36] W. Zhou, R. Ran, R. Cai, Z.P. Shao, W.Q. Jin and N.P. Xu, “Effect of a reducing agent for silver on electrochemical activity on an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-δ electrode prepared by electroless deposition technique”, J. Power Sources, 186, 244-251 (2009)
[37] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma and Z.F. Zhou, “A novel cobalt-free Ba0.5Sr0.5Fe0.9Mn0.1O3-δ-BaZr0.1Ce0.7Y0.2O3-δ composite cathode for solid oxide fuel cells”, J. Power Sources, 204, 89-93 (2012)
[38] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, and G.Y. Meng, “Intermediate-to-low Temperature Protonic Ceramic Membrane Fuel Cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.2O3-δ composite cathode”, J. Power Sources, 186, 58-61 (2009)
[39] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng and X.Q. Liu, “Cobalt-free Oxide Ba0.5Sr0.5Co0.8Cu0.2O3-δ for Proton-conducting solid oxide fuel cell cathode”, Int. J. Hydrogen Energy, 35, 3769-3774 (2010)
[40] J.W. Wu and X.B. Liu, “Recent development of sofc metallic interconnect”, Mater. Sci. Technol., 26, 293-305 (2010)
[41] E. Konysheva, U. Seeling, A. Besmehn, and K. Hilpert, “Chromium vaporization of ferritic steel crofer22 APU and ODS Cr5Fe1Y2O3 alloy”, J. Mater. Sci. Lett., 42, 5778-5784 (2007)
[42] Z.G. Yang, G.G. Xia, P. Singh and J.W. Stevenson, “Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells”, J. Power Sources, 155, 246-252 (2006)
[43] Y.D. Zhen, S.P. Jiang, S. Zhang, and V. Tan, “Interaction between metallic interconnect and constituent oxide of (La, Sr)MnO3 coating of solid oxide fuel cells”, J. Eur. Ceram. Soc., 26, 3253-3264 (2006)
[44] B.C.H. Steele and A. Heinzel, “Materials for fuel-cell technologies”, Nature, 414, 345-352 (2001)
[45] T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y.P. Xiong, M.E. Brito, and H. Yokokawa, “Effects of silicon concentration in SOFC alloy interconnects on the formation of oxide scales in hydrocarbon fuels”, J. Power Sources, 157, 681-687 (2006)
[46] H.S. Seo, G. Jin, J.H. Jun, D.H. Kim, and K.Y. Kim, “Effect of reactive elements on oxida”, J. Power Sources, 178, 1-8 (2008)
[47] Z.G. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson, “Selction and evaluation of heat-resistant alloys for SOFC interconnect applications”, J. Electrochem. Soc., 150, A1188-A1201 (2003)
[48] J. Pu, J. Li, B. Hua and G.Y. Xie, “Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere”, J. Power Sources, 158, 354-360 (2006)
[49] S.H. Kim, J.Y. Huh, J.H. Jun, and J. Favergeon, “Thin elemental coatings of yttrium, cobalt, and yttrium/cobalt on ferrtic stainless steel for SOFC interconnect applications”, J. Appl. Phys., 10 S86-S90 (2010)
[50] H. Inaba and H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, 83, 1-16 (1996).
[51] M. Mogensen, N.M. Sammes, G.A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ionics, 129, 63-94 (2000)
[52] C. Xia, M. Liu, “Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing”, Solid State Ionics, 144, 249-255 (2001)
[53] Y. Zhou, X.F. Guan, H. Zhou, K. Ramadoss, S. Adam, H.J. Liu, S.S. Lee, J. Shi, M. Tsuchiya, D.D. Fong, S. Ramanathan, “Strongly correlated perovskite fuel cells”, Nature, 534, 231-234 (2016)
[54] K.D. Kreuer, “Proton-conducting oxides”, Annu Rev Mater Res, 33, 333-359 (2003)
[55] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., 135, 530-533 (1988)
[56] H. Iwahara, “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics, 77, 289-298 (1995)
[57] Z. Zhong, “Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems”, Solid State Ionics, 178, 213-220 (2007)
[58] D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras “BaCeO3: materials development, properties and application”, Prog. Mater. Sci., 60, 72-129 (2014)
[59] C.J. Tseng, J.K. Chang, I.M. Hung, K.R. Lee, S.W. Lee, “BaZr0.2Ce0.8-xYxO3-δ solid oxide fuel cell electrolyte synthesized by sol-gel combined with composition-exchange method”, Int. J. Hydrogen Energy, 39, 4434-4440 (2014)
[60] D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras, “Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials”, J. Power Sources, 273, 716-723 (2015)
[61] B. Zhu, R. Raza, G. Abbas, M. Singh, “An Electrolyte-Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity”, Adv. Funct. Mater., 21, 2465-2469 (2011)
[62] B. Zhu, R. Raza, H. Qin, H. Liu, L. Fan, “Fuel cells based on electrolyte and non-electrolyte separators”, Energy Environ. Sci., 4, 2986-2992 (2011)
[63] B. Zhu, “Next generation fuel cell R&D”, Int. J. Energy Res. 30, 895-903(2006)
[64] E.W. McFarland, J. Tang, “A photovoltaic device structure based on internal electron emission”, Nature, 421, 616-618 (2003)
[65] J.M. Luther, M. Law, M.C. Beard, Q. Song, M.Q. Reese, R.J. Ellingson, A.J. Nozik, “Schottky solar cells based on colloidal nanocrystal films”, Nano Lett., 8, 3488-3492 (2008)
[66] L. Zhang, Y. Jia, S. Wang, Z. Li, C. Ji, J. Wei, H. Zhu, K. Wang, D. Wu, E. Shi, Y. Fang, A. Cao, “Carbon nanotube and CdSe nanobelt Schottky junction solar cells”, Nano Lett., 10, 3583-3589 (2010)
[67] C. Xie, J. Jie, B. Nie, T. Yan, Q. Li, P. Lv, F. Li, M. Wang, C. Wu, L. Wang, L. Luo, “Monolayer graphene film/silicon nanowire array Schottky junction solar cells”, Appl. Phys. Lett., 100 , 193103-193104 (2012)
[68] A. Ulyashin, A. Sytchkova, “Hydrogen related phenomena at the ITO/a‐Si:H/Si heterojunction solar cell interfaces”, Phys. Status Solidi A, 210, 711-716 (2013)
[69] R. Yu, C. Pan, Z. L. Wang, “High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect”, Energy Environ. Sci., 6, 494-499 (2013)
[70] B. Zhu, Y.Z. Huang, L.D. Fan, Y. Ma, B.Y. Wang, C. Xia, M. Afzal, B.W. Zhang, W.J. Dong, H. Wang, P.D. Lund, “Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle”, Nano Energy, 19, 156-164 (2016)
[71] J. Zhu, H. Deng, B. Zhu, W.J. Dong, W. Zhang, J.J. Li, X.J. Bao, “Polymer-assistant ceramic nanocomposite materials for advanced fuel cell technologies”, Ceram. Int., 43, 5484-5489 (2017)
[72] B. Zhu, P.D. Lund, R. Raza, Y. Ma, L.D. Fan, M. Afzal, J. Patakangas, Y.J. He, Y.F. Zhao, W.Y. Tan, Q.A. Huang, J. Zhang, H. Wang, “Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials”, Adv. Energy Mater. 5, 1401895(1)- 1401895(6) (2015)
[73] Y.M. Guo, Y. Lin, R Ran, Z.P. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0≤y≤0.8) for fuel cell applications”, J. Power Sources, 193, 400-407 (2009)
[74] E. Fabbri, A. Depifanio, E. Dibartolomeo, S. Licoccia, E. Traversa, “Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, 179, 558-564 (2008)
[75] K. Takeuchi, C,K, Loong, Jr J.W. Richardson, J. Guan, S.E. Dorris, U. Balachandran, “The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping” Solid State Ionics 138, 63-77 (2000)
[76] L.D. Fan, P.C. Su, “Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells”, J. Power Sources, 306, 369-377 (2016)
[77] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3” Solid State Ionics, 138, 91-98 (2000)
[78] L. Yang, C.D. Zuo, M.L. Liu, “High-performance anode-supported Solid Oxide Fuel Cells based on Ba(Zr0.1Ce0.7Y0.2)O3−δ (BZCY) fabricated by a modified co-pressing process” J. Power Sources, 195, 1845-4848 (2010)
[79] J. Chaney, J.D. Santillán, E. Knittle, Q. Williams, “A high-pressure infrared and Raman spectroscopic study of BaCO3: the aragonite, trigonal and Pmmn structures”, Phys. Chem. Miner 42, 83-93 (2015).
[80] H. Iwahara, “Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications”, Solid State Ionics 52, 99-104 (1992)
[81] L.Q. Gui, Y.H. Ling, G. Li, Z.H. Wang, Y.H. Wan, R.R. Wang, B.B. He, L. Zhao, “Enhanced sinterability and conductivity of BaZr0.3Ce0.5Y0.2O3-δ by addition of bismuth oxide for proton conducting solid oxide fuel cells”, J Power Sources 2016; 301: 369-75.
[82] N. Nasani, P.A.N. Dias, J.A. Saraiva, D.P. Fagg, “Synthesis and conductivity of Ba(Ce,Zr,Y)O3-δ electrolytes for PCFCs by new nitrate-free combustion method”, Int. J. Hydrogen Energy, 38, 8461-8470 (2013)
[83] J.X. Li, J.L. Luo, K.T. Chuang, A.R. Sanger, “Chemical stability of Y-doped Ba(Ce,Zr)O3 perovskites in H2S-containing H2”. Electrochim. Acta, 53, 3701-3707 (2008)
[84] http://www.ccp14.ac.uk/ccp/webmirrors/pki/uni/pki/members/schinzer/stru_chem/perov/di_gold.html
[85] Y. Ma, X. Wang, R. Raza, M. Muhammed, B. Zhu, “Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs”, Int. J. Hydrogen Energy, 35, 2580-2585 (2010)
[86] C.C. Duan, J.H. Tong, M. Shang, S.F. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, “Readily processed protonic ceramic fuel cells with high performance at low temperatures”, Science, 349, 1321-1325 (2015)
[87] M. Chen, D.C. Chen, K. Wang, Q. Xu, “Densification and electrical conducting behavior of BaZr0.9Y0.1O3-δ proton conducting ceramics with NiO additive”, J. Alloys Compd., 781, 857-865 (2009)
[88] L. Bi, E.H. Da’as, S.P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochem. Commun., 80, 20-23 (2017)
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2019-11-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明