參考文獻 |
[1] https://www.nies.go.jp/event/cop/cop21/20151204.html
[2] 溫室氣體減量及管理法
[3] http://web3.moeaboe.gov.tw/ecw/populace/content/ContentLink.aspx?menu_id=378
[4] 黃鎮江, 燃料電池, Vol. 3, 滄海書局, 2008.
[5] Z. Shao, S.M. Halle, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431, 170-173 (2004)
[6] S.C. Singhal, K. Kendall, High-temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier, 2003
[7] S. Mclntosh, R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., 104, 4845-4866 (2004)
[8] E. Fontell, T. Kivisaari, N. Christiansen, J.B. Hansen, J. Palsson, “Conceptual study of a 250 kW planar SOFC system for CHP application”, J. Power Sources, 131, 49-56 (2004)
[9] https://www.energytrend.com.tw/news/20180817-14311425.html
[10] L. Bi, S. Boulfrad, E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chem. Soc. Rev., 43, 8255-8270 (2014)
[11] http://www.tuwenba.com/content/MDE3NjUyM3zgz.html
[12] http://info.taiwantrade.com/CH/bizsearchdetail/6333728/C/1
[13] A. Tugirumubano, H.J. Shin, S.H. Go, M.S. Lee, L.K. Kwac, H.G. Kim, “Electrochemical performance analysis of a PEM water electrolysis with cathode feed mode based on flow passage shape of titanium plates”, Int. J. Precis. Eng. Man., 17, 1073-1078 (2016)
[14] F. Barbir, “PEM electrolysis for production of hydrogen from renewable energy sources”, Solar Energy, 78, 661-669 (2005)
[15] J.M. Spurgeon, N.S. Lewis, “Proton exchange membrane electrolysis sustained by water vapor”, Energy Environ. Sci., 4, 2993-2998 (2011)
[16] S.A. Grigoriev, V.I. Porembsky, V.N. Fateev, “Pure hydrogen production by PEM electrolysis for hydrogen energy”, Int. J. Hydrogen Energy, 31, 171-175 (2006)
[17] A.H. Mamaghani, B. Najafi, A. Casalegno, F. Rinaldi, “Long-term economic analysis and optimization of an HT-PEM fuel cell based micro combined heat and power plant”, Appl. Therm. Eng., 99, 1201-1211 (2016)
[18] A. Arabacı, M.F. Öksüzömer, “Preparation and characterization of 10 mol% Gd doped CeO2 (GDC) electrolyte for SOFC applications”, Ceram. Int. 38, 6509-6515 (2012)
[19] K. Xie, R.Q. Yan, and X.Q. Liu, “A Novel Anode Supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ Electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochem. Commun., 11, 1618-1622 (2009)
[20] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, and H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, Int. J. Hydrogen Energy, 33, 2826-2833 (2008)
[21] K.V. Galloway and N.M. Sammes, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering”, Encyclopedia of Electrochem. Power Sources, 17-24 (2009)
[22] J. Rossmeisl, W.G. Bessler, “Trends in catalytic activity for SOFC anode materials”, Solid State Ionics, 178, 1694-1700 (2008)
[23] B.H. Rainwater, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Int. J. Hydrogen Energy, 37, 18342-18348 (2012)
[24] W.Z. Zhu and S.C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Mater. Sci. Eng., A, 362, 228-239 (2003)
[25] B.C.H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 oC”, Solid State Ionics, 129, 95-110 (2000)
[26] J.J. Haslam, A.Q. Pham, B.W. Chung, J.F> DiCarlo, and R.S. Glass, “Effect of the use of pore formers on performance of an anode supported solid oxide fuel cell”, J. Am. Ceram. Soc., 88, 513-518 (2005)
[27] F. Zhao, and A.V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters”, J. Power Sources, 141, 79-95 (2005)
[28] C. Sun, and U. Stimming, “Recent anode advances in solid oxide fuel cells”, J. Power Sources, 171, 247-260 (2007)
[29] S. Mclntosh, R.J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., 104, 4845-4865 (2004)
[30] A. Essoumhi, G. Taillades, M. Taillades-Jacquin, D.J. Jones and J. Roziere, “Synthesis and characterization of Ni-cermet/proton conducting thin film electrolyte symmetrical assemblies”, Solid State Ionics, 179, 2155-2159 (2008)
[31] W.Y. Tan, Q. Zhong, M.S. Miao, H.X. Qu, “H2S solid fuel cell based on a modified barium cerate perovskite proton conductor”, Ionics, 15, 385-388 (2009)
[32] E. Ivers-Tiffee, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering”, Encyclopedia of Electrochem. Power Sources, 2, 181-187 (2009)
[33] N.M. Sammes, B.R. Roy, “Fuel cell - Solid oxide fuel cells Anode Reference Module in Chemistry, Molecular Sciences and Chemical Engineering”, Encyclopedia of Electrochem. Power Sources, 25-33 (2009)
[34] B. Wei, Z. Lu, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, and W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3-δ(0.3≦x≦0.7)”, J. Eur. Ceram. Soc., 26, 2827-2832 (2006)
[35] Y. Lin, R. Ran, Y. Zheng, Z.P. Shao, W.Q. Jin, N.P. Xu, and J.M. Ahn, “Evaluation of Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a potential cathode for anode-supported proton-conducting solid-oxide fuel cell”, J. Power Sources, 180, 15-22 (2008)
[36] W. Zhou, R. Ran, R. Cai, Z.P. Shao, W.Q. Jin and N.P. Xu, “Effect of a reducing agent for silver on electrochemical activity on an Ag/Ba0.5Sr0.5Co0.8Fe0.2O3-δ electrode prepared by electroless deposition technique”, J. Power Sources, 186, 244-251 (2009)
[37] Z.J. Yang, W.B. Wang, J. Xiao, H.M. Zhang, F. Zhang, G.L. Ma and Z.F. Zhou, “A novel cobalt-free Ba0.5Sr0.5Fe0.9Mn0.1O3-δ-BaZr0.1Ce0.7Y0.2O3-δ composite cathode for solid oxide fuel cells”, J. Power Sources, 204, 89-93 (2012)
[38] B. Lin, H.P. Ding, Y.C. Dong, S.L. Wang, X.Z. Zhang, D.R. Fang, and G.Y. Meng, “Intermediate-to-low Temperature Protonic Ceramic Membrane Fuel Cells with Ba0.5Sr0.5Co0.8Fe0.2O3-δ-BaZr0.1Ce0.7Y0.2O3-δ composite cathode”, J. Power Sources, 186, 58-61 (2009)
[39] L. Zhao, B.B. He, Y.H. Ling, Z.Q. Xun, R.R. Peng, G.Y. Meng and X.Q. Liu, “Cobalt-free Oxide Ba0.5Sr0.5Co0.8Cu0.2O3-δ for Proton-conducting solid oxide fuel cell cathode”, Int. J. Hydrogen Energy, 35, 3769-3774 (2010)
[40] J.W. Wu and X.B. Liu, “Recent development of sofc metallic interconnect”, Mater. Sci. Technol., 26, 293-305 (2010)
[41] E. Konysheva, U. Seeling, A. Besmehn, and K. Hilpert, “Chromium vaporization of ferritic steel crofer22 APU and ODS Cr5Fe1Y2O3 alloy”, J. Mater. Sci. Lett., 42, 5778-5784 (2007)
[42] Z.G. Yang, G.G. Xia, P. Singh and J.W. Stevenson, “Electrical contacts between cathodes and metallic interconnects in solid oxide fuel cells”, J. Power Sources, 155, 246-252 (2006)
[43] Y.D. Zhen, S.P. Jiang, S. Zhang, and V. Tan, “Interaction between metallic interconnect and constituent oxide of (La, Sr)MnO3 coating of solid oxide fuel cells”, J. Eur. Ceram. Soc., 26, 3253-3264 (2006)
[44] B.C.H. Steele and A. Heinzel, “Materials for fuel-cell technologies”, Nature, 414, 345-352 (2001)
[45] T. Horita, H. Kishimoto, K. Yamaji, N. Sakai, Y.P. Xiong, M.E. Brito, and H. Yokokawa, “Effects of silicon concentration in SOFC alloy interconnects on the formation of oxide scales in hydrocarbon fuels”, J. Power Sources, 157, 681-687 (2006)
[46] H.S. Seo, G. Jin, J.H. Jun, D.H. Kim, and K.Y. Kim, “Effect of reactive elements on oxida”, J. Power Sources, 178, 1-8 (2008)
[47] Z.G. Yang, K.S. Weil, D.M. Paxton, and J.W. Stevenson, “Selction and evaluation of heat-resistant alloys for SOFC interconnect applications”, J. Electrochem. Soc., 150, A1188-A1201 (2003)
[48] J. Pu, J. Li, B. Hua and G.Y. Xie, “Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere”, J. Power Sources, 158, 354-360 (2006)
[49] S.H. Kim, J.Y. Huh, J.H. Jun, and J. Favergeon, “Thin elemental coatings of yttrium, cobalt, and yttrium/cobalt on ferrtic stainless steel for SOFC interconnect applications”, J. Appl. Phys., 10 S86-S90 (2010)
[50] H. Inaba and H. Tagawa, “Ceria-based solid electrolytes”, Solid State Ionics, 83, 1-16 (1996).
[51] M. Mogensen, N.M. Sammes, G.A. Tompsett, “Physical, chemical and electrochemical properties of pure and doped ceria”, Solid State Ionics, 129, 63-94 (2000)
[52] C. Xia, M. Liu, “Low-temperature SOFCs based on Gd0.1Ce0.9O1.95 fabricated by dry pressing”, Solid State Ionics, 144, 249-255 (2001)
[53] Y. Zhou, X.F. Guan, H. Zhou, K. Ramadoss, S. Adam, H.J. Liu, S.S. Lee, J. Shi, M. Tsuchiya, D.D. Fong, S. Ramanathan, “Strongly correlated perovskite fuel cells”, Nature, 534, 231-234 (2016)
[54] K.D. Kreuer, “Proton-conducting oxides”, Annu Rev Mater Res, 33, 333-359 (2003)
[55] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., 135, 530-533 (1988)
[56] H. Iwahara, “Technological challenges in the application of proton conducting ceramics”, Solid State Ionics, 77, 289-298 (1995)
[57] Z. Zhong, “Stability and conductivity study of the BaCe0.9-xZrxY0.1O2.95 systems”, Solid State Ionics, 178, 213-220 (2007)
[58] D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras “BaCeO3: materials development, properties and application”, Prog. Mater. Sci., 60, 72-129 (2014)
[59] C.J. Tseng, J.K. Chang, I.M. Hung, K.R. Lee, S.W. Lee, “BaZr0.2Ce0.8-xYxO3-δ solid oxide fuel cell electrolyte synthesized by sol-gel combined with composition-exchange method”, Int. J. Hydrogen Energy, 39, 4434-4440 (2014)
[60] D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras, “Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials”, J. Power Sources, 273, 716-723 (2015)
[61] B. Zhu, R. Raza, G. Abbas, M. Singh, “An Electrolyte-Free Fuel Cell Constructed from One Homogenous Layer with Mixed Conductivity”, Adv. Funct. Mater., 21, 2465-2469 (2011)
[62] B. Zhu, R. Raza, H. Qin, H. Liu, L. Fan, “Fuel cells based on electrolyte and non-electrolyte separators”, Energy Environ. Sci., 4, 2986-2992 (2011)
[63] B. Zhu, “Next generation fuel cell R&D”, Int. J. Energy Res. 30, 895-903(2006)
[64] E.W. McFarland, J. Tang, “A photovoltaic device structure based on internal electron emission”, Nature, 421, 616-618 (2003)
[65] J.M. Luther, M. Law, M.C. Beard, Q. Song, M.Q. Reese, R.J. Ellingson, A.J. Nozik, “Schottky solar cells based on colloidal nanocrystal films”, Nano Lett., 8, 3488-3492 (2008)
[66] L. Zhang, Y. Jia, S. Wang, Z. Li, C. Ji, J. Wei, H. Zhu, K. Wang, D. Wu, E. Shi, Y. Fang, A. Cao, “Carbon nanotube and CdSe nanobelt Schottky junction solar cells”, Nano Lett., 10, 3583-3589 (2010)
[67] C. Xie, J. Jie, B. Nie, T. Yan, Q. Li, P. Lv, F. Li, M. Wang, C. Wu, L. Wang, L. Luo, “Monolayer graphene film/silicon nanowire array Schottky junction solar cells”, Appl. Phys. Lett., 100 , 193103-193104 (2012)
[68] A. Ulyashin, A. Sytchkova, “Hydrogen related phenomena at the ITO/a‐Si:H/Si heterojunction solar cell interfaces”, Phys. Status Solidi A, 210, 711-716 (2013)
[69] R. Yu, C. Pan, Z. L. Wang, “High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect”, Energy Environ. Sci., 6, 494-499 (2013)
[70] B. Zhu, Y.Z. Huang, L.D. Fan, Y. Ma, B.Y. Wang, C. Xia, M. Afzal, B.W. Zhang, W.J. Dong, H. Wang, P.D. Lund, “Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle”, Nano Energy, 19, 156-164 (2016)
[71] J. Zhu, H. Deng, B. Zhu, W.J. Dong, W. Zhang, J.J. Li, X.J. Bao, “Polymer-assistant ceramic nanocomposite materials for advanced fuel cell technologies”, Ceram. Int., 43, 5484-5489 (2017)
[72] B. Zhu, P.D. Lund, R. Raza, Y. Ma, L.D. Fan, M. Afzal, J. Patakangas, Y.J. He, Y.F. Zhao, W.Y. Tan, Q.A. Huang, J. Zhang, H. Wang, “Schottky Junction Effect on High Performance Fuel Cells Based on Nanocomposite Materials”, Adv. Energy Mater. 5, 1401895(1)- 1401895(6) (2015)
[73] Y.M. Guo, Y. Lin, R Ran, Z.P. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0≤y≤0.8) for fuel cell applications”, J. Power Sources, 193, 400-407 (2009)
[74] E. Fabbri, A. Depifanio, E. Dibartolomeo, S. Licoccia, E. Traversa, “Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)”, Solid State Ionics, 179, 558-564 (2008)
[75] K. Takeuchi, C,K, Loong, Jr J.W. Richardson, J. Guan, S.E. Dorris, U. Balachandran, “The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping” Solid State Ionics 138, 63-77 (2000)
[76] L.D. Fan, P.C. Su, “Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells”, J. Power Sources, 306, 369-377 (2016)
[77] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3” Solid State Ionics, 138, 91-98 (2000)
[78] L. Yang, C.D. Zuo, M.L. Liu, “High-performance anode-supported Solid Oxide Fuel Cells based on Ba(Zr0.1Ce0.7Y0.2)O3−δ (BZCY) fabricated by a modified co-pressing process” J. Power Sources, 195, 1845-4848 (2010)
[79] J. Chaney, J.D. Santillán, E. Knittle, Q. Williams, “A high-pressure infrared and Raman spectroscopic study of BaCO3: the aragonite, trigonal and Pmmn structures”, Phys. Chem. Miner 42, 83-93 (2015).
[80] H. Iwahara, “Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications”, Solid State Ionics 52, 99-104 (1992)
[81] L.Q. Gui, Y.H. Ling, G. Li, Z.H. Wang, Y.H. Wan, R.R. Wang, B.B. He, L. Zhao, “Enhanced sinterability and conductivity of BaZr0.3Ce0.5Y0.2O3-δ by addition of bismuth oxide for proton conducting solid oxide fuel cells”, J Power Sources 2016; 301: 369-75.
[82] N. Nasani, P.A.N. Dias, J.A. Saraiva, D.P. Fagg, “Synthesis and conductivity of Ba(Ce,Zr,Y)O3-δ electrolytes for PCFCs by new nitrate-free combustion method”, Int. J. Hydrogen Energy, 38, 8461-8470 (2013)
[83] J.X. Li, J.L. Luo, K.T. Chuang, A.R. Sanger, “Chemical stability of Y-doped Ba(Ce,Zr)O3 perovskites in H2S-containing H2”. Electrochim. Acta, 53, 3701-3707 (2008)
[84] http://www.ccp14.ac.uk/ccp/webmirrors/pki/uni/pki/members/schinzer/stru_chem/perov/di_gold.html
[85] Y. Ma, X. Wang, R. Raza, M. Muhammed, B. Zhu, “Thermal stability study of SDC/Na2CO3 nanocomposite electrolyte for low-temperature SOFCs”, Int. J. Hydrogen Energy, 35, 2580-2585 (2010)
[86] C.C. Duan, J.H. Tong, M. Shang, S.F. Nikodemski, M. Sanders, S. Ricote, A. Almansoori, R. O’Hayre, “Readily processed protonic ceramic fuel cells with high performance at low temperatures”, Science, 349, 1321-1325 (2015)
[87] M. Chen, D.C. Chen, K. Wang, Q. Xu, “Densification and electrical conducting behavior of BaZr0.9Y0.1O3-δ proton conducting ceramics with NiO additive”, J. Alloys Compd., 781, 857-865 (2009)
[88] L. Bi, E.H. Da’as, S.P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochem. Commun., 80, 20-23 (2017) |