博碩士論文 106323007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:94 、訪客IP:18.119.213.216
姓名 曾品碩(Pin-Shuo Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 傳統骨板與解剖骨板對於固定Sanders II-B型跟骨骨折力學分析
(Biomechanical analysis of conventional and anatomical calcaneal plates for fixing Sanders type II-B calcaneal fractures)
相關論文
★ 田口分析法驗證射出參數對光碟機面板翹曲變形量之研究★ 聚丙烯射出成型品表面具抗沾黏特性之研究
★ 光學鏡片之有限元素網格品質探討暨模仁全方位體積收縮補償法之研究★ 從模流到結構的集成分析光學鏡片之模仁變形研究
★ 應用反應曲面法進行鏡筒真圓度之射出成型參數優化★ 冠狀動脈三維重建之初步架構
★ Zienkiewicz動態多孔彈性力學模型之穩定性探討★ 外加磁場輔助射出成型對於導電高分子複合材料的磁性纖維配向與導電度之實驗與模擬
★ 骨板與骨釘之參數模型應用於股骨骨折術前規劃★ 光學鏡片模具之異型水路最佳化設計
★ 以線性迴歸分析驗證射出成型縫合角與抗拉強度呈正相關★ 異形水路模具設計對於金屬粉末射出成型槍機卡榫影響之研究
★ 槍機卡榫模流分析參數最佳化之研究★ 聚碳酸酯與碳纖維複合材料之射出參數對於縫合線強度之研究
★ 運用田口方法分析ABS塑膠材料之射出成型參數對拉伸強度的影響★ 化學發泡射出成型製程條件對聚丙烯與聚苯乙烯之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於開放式復位跟骨關節內骨折固定術而言,確保手術後的穩定性是十分必要的。目前在實施關節內固定手術時提供患者選擇的骨板有新型解剖型Aplus骨板以及傳統Y型骨板兩款。本研究目的是探討兩款骨板在Sanders type II-B型骨折型態下承受負載之力學與生物力學行為,探究兩骨板能否提供足夠穩定性、比較兩者對骨折跟骨造成的應力遮蔽效應程度並對固定骨板之骨釘數量與位置對結構穩定性之影響進行探討。本研究使用COMSOL Multiphysics有限元素分析軟體建立兩種骨板在Sanders type II-B型跟骨骨折下之有限元素模型。結果顯示,Aplus骨板固定之跟骨模型,擁有相對優秀的穩定性以及較小的應力屏蔽效應。
摘要(英) For open reduction internal fixation of intra-articular calcaneal fractures, initial stability is essential. Currently there are two type of calcaneal plate can be chosen for calcaneal fixation, new type anatomical calcaneal plate Aplus and conventional Y plate. The objective of this study is to investigate the mechanical and biomechanical behavior of the two bone plates subjected to load in the Sanders type II-B calcaneal fracture, and to explore whether the two bone plates can provide sufficient stability. Also, compare the stress shielding effect cause by the plate and discuss the influence of the number and position of bone screws to the stability. This study used COMSOL Multiphysics finite analysis software to establish two finite element models for two kind of calcaneal plate under the Sanders type II-B calcaneal fracture. Analysis results indicate that Aplus calcaneal plate model has relatively great stiffness and causing small stress shielding effect.
關鍵字(中) ★ 解剖型骨板
★ 跟骨骨折
★ 有限元素法
關鍵字(英) ★ anatomical calcaneal plate
★ calcaneal fracture
★ finite element method
論文目次 摘要 i
Abstract iii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 跟骨的解剖學構造 3
1.4 跟骨骨折分類 7
1.5 骨折癒合 11
1.6 應力遮蔽效應 13
1.7 文獻回顧 14
第二章 有限元素分析 18
2.1 數學方程式 18
2.2 有限元素建模 19
2.2.1 跟骨模型建立 19
2.2.2 骨板模型建立 20
2.2.3 骨釘模型建立 22
2.2.4 術後骨折跟骨三維有限元素模型建立 24
2.3 有限元素模型材料性質 26
2.4 負載與邊界條件設定 27
2.5 網格與收斂性分析 30
2.6 後處理探討參數 31
第三章 結果與討論 32
3.1 等效應力(VON MISES STRESS) 33
3.1.1 骨板應力 33
3.1.2 骨釘應力 36
3.2 垂直方向位移 36
3.3 骨釘數量的影響 40
第四章 結論 45
第五章 未來展望 46
第六章 參考文獻 47
附錄A 民國108年中國機械工程研討會摘要
參考文獻 [1] T. Illert, S. Rammelt, T. Drewes, R. Grass, and H. Zwipp, "Stability of locking and non-locking plates in an osteoporotic calcaneal fracture model," Foot & ankle international, vol. 32, no. 3, pp. 307-313, 2011.
[2] R. Buckley and R. Meek, "Comparison of open versus closed reduction of intra-articular calcaneal fractures: a matched cohort in workmen," in Major Fractures of the Pilon, the Talus, and the Calcaneus: Springer, 1993, pp. 195-205.
[3] S. K. Benirschke and B. J. Sangeorzan, "Extensive intraarticular fractures of the foot. Surgical management of calcaneal fractures," Clinical orthopaedics and related research, no. 292, pp. 128-134, 1993.
[4] D. Eastwood, V. Langkamer, and R. Atkins, "Intra-articular fractures of the calcaneum. Part II: open reduction and internal fixation by the extended lateral transcalcaneal approach," The Journal of bone and joint surgery. British volume, vol. 75, no. 2, pp. 189-195, 1993.
[5] P. Essex‐Lopresti, "The mechanism, reduction technique, and results in fractures of the os calcis," British Journal of Surgery, vol. 39, no. 157, pp. 395-419, 1952.
[6] 麥麗敏、陳智傑、廖美華, 解剖生理學, 台灣: 華杏出版股份有限公司, 2015, p. 755. [Online]. Available.
[7] https://reurl.cc/DLoqR.
[8] https://reurl.cc/GRQMx.
[9] https://reurl.cc/qjXdy.
[10] https://reurl.cc/LL6oX.
[11] H. M. Frost, "Wolffs Law and bone′s structural adaptations to mechanical usage: an overview for clinicians.," The Angle Orthodontist, vol. 64, pp. 175- 188, 1994.
[12] E. Waris, Y. T. Konttinen, N. Ashammakhi, R. Suuronen, and S. Santavirta, "Bioabsorbable fixation devices in trauma and bone surgery: current clinical standing," Expert Review of Medical Devices, vol. 1, no. 2, pp. 229-240, 2004.
[13] M. Ni, D. W.-C. Wong, J. Mei, W. Niu, and M. Zhang, "Biomechanical comparison of locking plate and crossing metallic and absorbable screws fixations for intra-articular calcaneal fractures," Science China Life Sciences, vol. 59, no. 9, pp. 958-964, 2016.
[14] C. Piao, D. Wu, M. Luo, and H. Ma, "Stress shielding effects of two prosthetic groups after total hip joint simulation replacement," Journal of orthopaedic surgery and research, vol. 9, no. 1, p. 71, 2014.
[15] M. Richter, P. Droste, T. Goesling, S. Zech, and C. Krettek, "Polyaxially-locked plate screws increase stability of fracture fixation in an experimental model of calcaneal fracture," The Journal of bone and joint surgery. British volume, vol. 88, no. 9, pp. 1257-1263, 2006.
[16] M. H. Blake, J. R. Owen, T. S. Sanford, J. S. Wayne, and R. S. Adelaar, "Biomechanical evaluation of a locking and nonlocking reconstruction plate in an osteoporotic calcaneal fracture model," Foot & ankle international, vol. 32, no. 4, pp. 432-436, 2011.
[17] Q.-J. Pang, X. Yu, and Z.-H. Guo, "The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: a finite element analysis," Pakistan journal of medical sciences, vol. 30, no. 5, p. 1099, 2014.
[18] M. Ni, X.-H. Weng, J. Mei, and W.-X. Niu, "Primary stability of absorbable screw fixation for intra-articular calcaneal fractures: a finite element analysis," Journal of Medical and Biological Engineering, vol. 35, no. 2, pp. 236-241, 2015.
[19] B. Yu et al., "Biomechanical comparison of conventional and anatomical calcaneal plates for the treatment of intraarticular calcaneal fractures–a finite element study," Computer methods in biomechanics and biomedical engineering, vol. 19, no. 13, pp. 1363-1370, 2016.
[20] C.-H. Chen, Y.-H. Huang, C. Hung, C.-S. Chen, and C.-C. Chiang, "Finite Element Analysis of Tongue Type Calcaneal Fracture with Open Reduction and Internal Fixation with Locking Plate," Journal of Medical and Biological Engineering, vol. 38, no. 1, pp. 1-9, 2018.
[21] C.-H. Chen, C. Hung, Y.-C. Hsu, C.-S. Chen, and C.-C. Chiang, "Biomechanical evaluation of reconstruction plates with locking, nonlocking, and hybrid screws configurations in calcaneal fracture: a finite element model study," Medical & biological engineering & computing, vol. 55, no. 10, pp. 1799-1807, 2017.
[22] H. Ouyang et al., "Biomechanical comparison of conventional and optimised locking plates for the fixation of intraarticular calcaneal fractures: a finite element analysis," Comput Methods Biomech Biomed Engin, vol. 20, no. 12, pp. 1339-1349, Sep 2017.
[23] A. Hrennikoff, "Solution of Problems in Elasticity by the Frame Work Method," Journal od Appled Mechanics, vol. 8, no. 4, pp. 169-175, 1941.
[24] D. McHenry, "A Lattice Analogy for the Solution of Plane Stress Problems," Journal of Institution of Civil Engineers, vol. 21, pp. 59-82, 1943.
[25] COMSOL Structural Mechanics Module User′s Guide. [Online]. Available.
[26] https://reurl.cc/EMDnK.
[27] B. Young, Wheater′s fenctional histology : a text and colour atlas., sixth ed. 2006.
[28] P. Kerr, M. Pape, M. Jackson, and R. Atkins, "Early experiences with the AO calcaneal fracture plate," Injury, vol. 27, no. 1, pp. 39-41, 1996.
[29] "Locking calcaneal plates," ed.
[30] L. Peng, J. Bai, X. Zeng, and Y. Zhou, "Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions," Medical engineering & physics, vol. 28, no. 3, pp. 227-233, 2006.
[31] S. Benli, S. Aksoy, H. Havıtcıoğlu, and M. Kucuk, "Evaluation of bone plate with low-stiffness material in terms of stress distribution," Journal of Biomechanics, vol. 41, no. 15, pp. 3229-3235, 2008.
[32] C.-L. Wang, C.-K. Cheng, C.-W. Chen, C.-M. Lu, Y.-S. Hang, and T.-K. Liu, "Contact areas and pressure distributions in the subtalar joint," Journal of biomechanics, vol. 28, no. 3, pp. 269-279, 1995.
[33] 蕭德慶, "鎖定加壓骨板之有限元素分析與最佳化設計," 2017.
[34] 余欣儒, "以有限元素分析探討不同的無柄人工髖關節設計及骨釘方位的生物力學影響," 碩士論文, 國立台北科技大學, 民國104.
指導教授 鍾禎元 審核日期 2019-10-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明