博碩士論文 105326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:52.14.168.56
姓名 潘弘益(Hong-Yi Pan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鎘的生物有效性為引起大腸桿菌對四環黴素 共選擇抗性的關鍵因子
(The bioavailability of cadmium is the key determinant of the co-selective resistance of tetracycline in E. coli)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣由於灌排不分的關係,常使得灌溉渠道底泥與其周遭農地土壤容易因偷排而受到重金屬的污染。這些污染對環境所造成的衝擊雖然與所排出的重金屬總濃度有關,但更關鍵的是這些重金屬在特定環境條件下所呈現出的生物有效性,因生物有效性不僅可左右重金屬對於生態系統所帶來的毒性風險程度外,也已被懷疑可能與抗生素抗藥性在環境中的誘發與持續有關。有鑑於此,本研究即以不具czc鎘抗性基因的革蘭氏陰性菌E. coli K-12為模式生物,在調整培養液鎘濃度0.4 ppm中添加三種不同氯離子濃度(1, 50, 200 mM)以改變系統內的優勢鎘物種分佈後,並藉由量化諸如生長抑制、細胞死亡、胞內能量費用(AMP/ADP/ATP比例多寡有關的energy charge)和氧化還原平衡狀態(NAD+/NADH和GSH/GSSG比例有關的redox balance)等生理表徵(phenotypes)。在細胞生長曲線中1 mM [Cl-]有最長的遲滯期。除了使用細胞生長方式探討外,也使用較生物分子層面,如LIVE/DEAD螢光試劑染色細胞內核酸去探討暴露自由鎘離子的死活比,結果如同生長曲線在較多自由鎘離子情況下活菌有較有延遲生長現象,而在死菌部分各個時間點沒有差異(p>0.05),原因為使用的鎘濃度為亞致死水平(sublethal level),故不會造成死菌累積情形。並且在16小時細胞能量貨幣(ATP)含量以及計算出的腺苷酸能電荷(Adenylate energy charge, AEC)為1 mM [Cl-]最少,意味著自由鎘離子進入細胞後會影響ATP合成導致菌遲滯期延長現象,也和細胞培養實驗相呼應。量測細胞內氧化還原平衡NADH/NAD+,說明在暴露鎘後1小時內有較高的NADH/NAD+比例,並且1 mM [Cl-]之較多自由鎘離子又較高NADH/NAD+比例,所造成的氧化還原平衡差異更大。穀胱甘肽為細胞內維持細胞內氧化還原平衡方式有兩種(i)自身氧化成GSSG丟失電子去還原自由基;(ii)金屬穩態(homeostatic)方式,在自由鎘離子進入細胞內將會和帶有硫醇官能基的GSH錯合,而不是自身丟失電子氧化方式保護細胞,這使得有無暴露鎘細胞內GSH濃度均會隨時間含量減少,而暴露鎘之GSSG濃度不隨時間點改變,說明了自由鎘離子進入細胞後造成GSH的改變。研究的結果與假說相符:E. coli K-12對於鎘的攝取符合自由離子活性模型(Free ion activity model, FIAM)理論,即以自由型態的Cd2+為最主要被攝入的鎘物種,且當細胞在一定時間內攝取到較多的鎘時,除了造成遲滯期較長,也導致細胞內生物分子受影響,藉由上述種種影響,也假設會與共選擇效應較快誘發/產生對四環素的抗藥性/耐受力,首先發現在有預暴露鎘的實驗組其遲滯期較短和有較高的比生長速率,又在暴露較多自由鎘離子其遲滯期較短和有較高的比生長速率,說明了較多自由鎘離子為主要引起四環黴素耐藥性關鍵因子。推測是暴露重金屬鎘後會提升本菌株帶有的ZntA外排基因,並且減少OmpC孔蛋白的通透性,以產生這種對於四環黴素非特異性的耐藥機制,又在1 mM [Cl-]預暴露鎘0.4 ppm因為生物有效性緣故又有較高的耐藥性表現。本研究僅對一種金屬(Cd)與一種抗生素(Tet)做探討,且尚未觸及基因表徵(genotypes)的量化,因此此現象是否可概括性的擴及其它金屬與抗生素(generalizable)仍待進一步證實。即使如此,本研究結果仍可說明環境污染物彼此間的協同作用,也表明抗藥性問題的複雜度。
摘要(英) Due to the unique policy in Taiwan that water from channels directly receiving wastewater discharges can be used as the irrigation water, irrigation channel sediments and the irrigated farmland often easily get contaminated by heavy metals. While the impact of heavy metal pollution depends on the total concentration of heavy metals, it is more critical resulted from the bioavailability of these heavy metals under specific environmental conditions. This is because bioavailability not only is related to the extent of toxicity that heavy metals can cause to the ecosystem, but also has been suspected to contribute to the induction and persistence of antibiotic resistance in the environment. However, to date this untraditional route of environmental antibiotic resistance development has not been systematically investigated. In this study, the Gram-negative bacterium E. coli K-12 that does not harbor the genes encoded for the czc system was used as a model organism to probe the association between the bioavailability of cadmium and the co-selection of resistance towards tetracycline. Cadmium chemistry in the culture medium was manipulated by adjusting the chloride content (i.e., 1, 50, 200 mM) at a fixed total cadmium concentration (i.e., 0.4 ppm) so that a concentration gradient of free cadmium ion could be produced. The followings were observed after cell exposure to cadmium: (1) lower chloride concentrations resulted in more prolonged lag phase of growth; (2) within the 16-hr exposure, cultures grown at 1 mM chloride had the lowest cellular adenylate energy charge (AEC); (3) higher ratios of cellular NADH/NAD+ were measured in cultures exposed to cadmium for 1 hr than those grown in the absence of cadmium, and of them cells incubated with 1 mM chloride showed a relatively high ratio of NADH/NAD+; (4) while intracellular GSH levels continued to decrease in both Cd-exposed and Cd-unexposed cultures in a 2-hr incubation period, GSSG levels only increased in Cd-exposed cells. These results could be explained with the free ion activity model (FIAM) that the free ion form of cadmium was the most bioavailable cadmium, consistent with our hypothesis. Lastly, pre-exposure of K-12 cells to 0.4 ppm cadmium at 1 mM chloride did exhibit stronger tetracycline (Tet) tolerance than cells that were grown at 200 mM chloride. Given that this study only discusses one metal (Cd) and one antibiotic (Tet), and has not yet touched the resistance at the genetic level (genotypes), whether this phenomenon can be generalized to other metals and antibiotics remains to confirmed (i.e., the generalizable issue). Nonetheless, results of this study can demonstrate the synergy of environmental pollutants, and also indicate the complexity of environmental antibiotic resistance problems.
關鍵字(中) ★ 生物有效性
★ 共選擇抗藥性
★ 鎘攝取
★ 四環素
關鍵字(英) ★ metal bioavailability
★ co-selective antibiotic resistance
★ cadmium uptake
★ tetracycline
論文目次 第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 5
2.1 重金屬 5
2.2 鎘的化學、生物化學與毒性介紹 5
2.2.1 鎘的基本特性及污染 6
2.2.2 鎘在環境中的化學型態 8
2.2.3 鎘的攝取與胞毒性 9
2.2.4 細胞對鎘的耐受性 11
2.3 化學物種和生物有效性 13
2.4 穀胱甘肽 15
2.4.1 穀胱甘肽生物合成途徑及其調控 15
2.4.2 穀胱甘肽和金屬穩態 16
2.5 型態分布的數學計算法 18
2.6 抗生素 19
2.6.1 抗生素的使用概況 22
2.6.2 環境中抗藥性基因內部及外部來源 23
2.7 四環黴素 24
2.8 ARGs作用及耐四環黴素基因機制 25
2.9 共選擇性 29
第三章 材料與方法 34
3.1 實驗藥品與儀器 34
3.1.1 實驗用藥品 34
3.1.2 實驗用儀器 35
3.2 實驗用模式生物 36
3.3 化學物種組成模擬軟體 36
3.4 試驗培養液的成分及製備 36
3.5 E. coli K-12 實驗菌液準備 42
3.6 微生物毒性試驗方法 42
3.6.1 光學密度生長曲線法 43
3.6.2 平板計數法 44
3.6.3 Live/Dead螢光顯微鏡試驗 44
3.6.4 ATP活性試驗 46
3.7 細胞內Glutathione試驗 48
3.8 細胞內NADH/NAD+試驗 51
3.9 預暴露鎘後暴露抗生素試驗 53
3.10 預暴露短時間鎘後暴露抗生素試驗 54
第四章 結果與討論 56
4.1 鎘物種於試驗培養液之模擬組成 56
4.2 暴露實驗前準備 57
4.2.1 試驗培養液之OD值選擇 57
4.2.2 不添加鎘不同氯離子濃度對菌生長影響 58
4.3 鎘物種組成對大腸桿菌的毒性影響探討 59
4.3.1 不同氯離子下E.coli k-12毒性影響探討 59
4.3.2 不同氯離子濃度下毒性造成ATP濃度試驗結果探討 64
4.3.3 暴露鎘和未暴露鎘不同氯離子濃度下造成NAD+和NADH濃度差異試驗結果探討 68
4.3.4 不同氯離子濃度下毒性造成GSH/GSSG濃度試驗結果探討 71
4.4 預暴露鎘後暴露抗生素之耐藥性相關性 77
4.4.1 預暴露不同氯離子毒性效應後暴露不同濃度抗生素之耐藥性相關性 77
4.4.2 預暴露不同氯離子毒性效應後暴露相同氯離子和不同濃度抗生素之耐藥性相關性 84
4.5 環境意義 90
第五章 結論與建議 92
5.1 結論 92
5.2 建議 92
參考文獻 94
附錄 111
參考文獻 Aasmäe, B., Häkkinen, L., Kaart, T., Kalmus, P., 2019. Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from Estonian cattle and swine from 2010 to 2015. Acta veterinaria scandinavica 61, 5.
Alborn, W., Allen, N., Preston, D., 1991. Daptomycin disrupts membrane potential in growing Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 35, 2282-2287.
Albright, L.J., Wentworth, J.W., Wilson, E.M., 1972. Technique for measuring metallic salt effects upon the indigenous heterotrophic microflora of a natural water. Water Research 6, 1589-1596.
Aldred, K.J., Kerns, R.J., Osheroff, N., 2014. Mechanism of quinolone action and resistance. Biochemistry 53, 1565-1574.
Alekshun, M.N., Levy, S.B., 1997. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrobial agents and chemotherapy 41, 2067.
Allen, H.K., Donato, J., Wang, H.H., Cloud-Hansen, K.A., Davies, J., Handelsman, J., 2010. Call of the wild: antibiotic resistance genes in natural environments. Nature reviews microbiology 8, 251.
Alvarez, P.J., Colvin, V., Lead, J., Stone, V., 2009. Research priorities to advance eco-responsible nanotechnology. ACS Publications.
Atkinson, D.E., Walton, G.M., 1967. Adenosine triphosphate conservation in metabolic regulation rat liver citrate cleavage enzyme. Journal of Biological Chemistry 242, 3239-3241.
Attila, C., Ueda, A., Wood, T.K., 2009. 5-Fluorouracil reduces biofilm formation in Escherichia coli K-12 through global regulator AriR as an antivirulence compound. Applied microbiology and biotechnology 82, 525.
Baker-Austin, C., Wright, M.S., Stepanauskas, R., McArthur, J., 2006. Co-selection of antibiotic and metal resistance. Trends in microbiology 14, 176-182.
Barbosa, T.M., Levy, S.B., 2000. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. Journal of bacteriology 182, 3467-3474.
Baskaran, M., 2011. Handbook of environmental isotope geochemistry. Springer Science & Business Media.
Beard, S.J., Hughes, M.N., Poole, R.K., 1995. Inhibition of the cytochrome bd-terminated NADH oxidase system in Escherichia coli K-12 by divalent metal cations. FEMS microbiology letters 131, 205-210.
Becerra-Castro, C., Machado, R.A., Vaz-Moreira, I., Manaia, C.M., 2015. Assessment of copper and zinc salts as selectors of antibiotic resistance in Gram-negative bacteria. Science of the Total Environment 530, 367-372.
Berg, J., Tom‐Petersen, A., Nybroe, O., 2005. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Letters in Applied Microbiology 40, 146-151.
Bermingham, A., Derrick, J.P., 2002. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24, 637-648.
Berney, M., Vital, M., Hülshoff, I., Weilenmann, H.-U., Egli, T., Hammes, F., 2008. Rapid, cultivation-independent assessment of microbial viability in drinking water. Water research 42, 4010-4018.
Boulos, L., Prevost, M., Barbeau, B., Coallier, J., Desjardins, R., 1999. LIVE/DEAD® BacLight™: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. Journal of microbiological Methods 37, 77-86.
Burdett, V., 1991. Purification and characterization of Tet (M), a protein that renders ribosomes resistant to tetracycline. Journal of Biological Chemistry 266, 2872-2877.
Bush, L.M., Calmon, J., Johnson, C.C., 1995. Newer penicillins and beta-lactamase inhibitors. Infectious disease clinics of North America 9, 653-686.
Caccavo, F., Lonergan, D.J., Lovley, D.R., Davis, M., Stolz, J.F., McInerney, M.J., 1994. Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752-3759.
Caille, O., Rossier, C., Perron, K., 2007. A copper-activated two-component system interacts with zinc and imipenem resistance in Pseudomonas aeruginosa. Journal of bacteriology 189, 4561-4568.
Campbell, P.G., 1994. Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. Metal Speciation and bioavailability, 45-102.
Casalino, E., Sblano, C., Landriscina, C., 1997. Enzyme activity alteration by cadmium administration to rats: the possibility of iron involvement in lipid peroxidation. Archives of Biochemistry and Biophysics 346, 171-179.
Chapman, A.G., Fall, L., Atkinson, D.E., 1971. Adenylate energy charge in Escherichia coli during growth and starvation. Journal of bacteriology 108, 1072-1086.
Chopra, I., Roberts, M., 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232-260.
Control, C.f.D., Prevention, 2013. Antibiotic resistance threats in the United States, 2013. Centres for Disease Control and Prevention, US Department of Health and ….
Costa, V., Quintanilha, A., Moradas‐Ferreira, P., 2007. Protein oxidation, repair mechanisms and proteolysis in Saccharomyces cerevisiae. IUBMB life 59, 293-298.
Costerton, W., Veeh, R., Shirtliff, M., Pasmore, M., Post, C., Ehrlich, G., 2003. The application of biofilm science to the study and control of chronic bacterial infections. The Journal of clinical investigation 112, 1466-1477.
Crea, F., Foti, C., Milea, D., Sammartano, S., 2013. Speciation of cadmium in the environment, Cadmium: from toxicity to essentiality. Springer, pp. 63-83.
Cullen, J.T., Maldonado, M.T., 2013. Biogeochemistry of cadmium and its release to the environment, cadmium: From toxicity to essentiality. Springer, pp. 31-62.
Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., Opdenakker, K., Nair, A.R., Munters, E., Artois, T.J., 2010. Cadmium stress: an oxidative challenge. Biometals 23, 927-940.
Dever, L.A., Dermody, T.S., 1991. Mechanisms of bacterial resistance to antibiotics. Archives of internal medicine 151, 886-895.
Dhakephalkar, P.K., Chopade, B.A., 1994. High levels of multiple metal resistance and its correlation to antibiotic resistance in environmental isolates of Acinetobacter. Biometals 7, 67-74.
Duffus, J.H., 2002. " Heavy metals" a meaningless term?(IUPAC Technical Report). Pure and applied chemistry 74, 793-807.
Eser, M., Masip, L., Kadokura, H., Georgiou, G., Beckwith, J., 2009. Disulfide bond formation by exported glutaredoxin indicates glutathione′s presence in the E. coli periplasm. Proceedings of the National Academy of Sciences 106, 1572-1577.
Falagas, M.E., Rafailidis, P.I., Matthaiou, D.K., 2010. Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resistance Updates 13, 132-138.
Farr, S.B., Kogoma, T., 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiology and Molecular Biology Reviews 55, 561-585.
Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O., Dantas, G., 2012. The shared antibiotic resistome of soil bacteria and human pathogens. science 337, 1107-1111.
Fulladosa, E., Villaescusa, I., Martínez, M., Murat, J.-C., 2005. Study of Cr (VI) and Cd (II) ions toxicity using the microtox bacterial bioassay, Environmental Chemistry. Springer, pp. 725-734.
Garau, J., 1994. Beta-lactamases: current situation and clinical importance. Intensive care medicine 20, S5-S9.
Garrison, W.M., 1987. Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chemical Reviews 87, 381-398.
Gelband, H., Molly Miller, P., Pant, S., Gandra, S., Levinson, J., Barter, D., White, A., Laxminarayan, R., 2015. The state of the world′s antibiotics 2015. Wound Healing Southern Africa 8, 30-34.
Gillings, M.R., 2013. Evolutionary consequences of antibiotic use for the resistome, mobilome and microbial pangenome. Frontiers in microbiology 4, 4.
Golet, E.M., Alder, A.C., Giger, W., 2002. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed, Switzerland. Environmental science & technology 36, 3645-3651.
González-Flecha, B., Demple, B., 1995. Metabolic sources of hydrogen peroxide in aerobically growing Escherichia coli. Journal of Biological Chemistry 270, 13681-13687.
Gotoh, N., Tsujimoto, H., Poole, K., Yamagishi, J.-i., Nishino, T., 1995. The outer membrane protein OprM of Pseudomonas aeruginosa is encoded by oprK of the mexA-mexB-oprK multidrug resistance operon. Antimicrobial Agents and Chemotherapy 39, 2567-2569.
Grass, G., Wong, M.D., Rosen, B.P., Smith, R.L., Rensing, C., 2002. ZupT is a Zn (II) uptake system in Escherichia coli. Journal of bacteriology 184, 864-866.
Gullberg, E., Albrecht, L.M., Karlsson, C., Sandegren, L., Andersson, D.I., 2014. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio 5, e01918-01914.
Gupta, A., Morby, A.P., Turner, J.S., Whitton, B.A., Robinson, N.J., 1993. Deletion within the metallothionein locus of cadmium‐tolerant Synechococcus PCC 6301 involving a highly iterated palindrome (HIP1). Molecular microbiology 7, 189-195.
Hall, J., 2002. Cellular mechanisms for heavy metal detoxification and tolerance. Journal of experimental botany 53, 1-11.
Hamscher, G., Sczesny, S., Höper, H., Nau, H., 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical chemistry 74, 1509-1518.
Harris, E., 1995. Metal ions in biological systems. JSTOR.
Hasman, H., Aarestrup, F.M., 2002. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrobial agents and chemotherapy 46, 1410-1416.
Hayashi, S., Abe, M., Kimoto, M., Furukawa, S., Nakazawa, T., 2000. The dsbA-dsbB disulfide bond formation system of Burkholderia cepacia is involved in the production of protease and alkaline phosphatase, motility, metal resistance, and multi-drug resistance. Microbiology and immunology 44, 41-50.
He, L.-Y., Liu, Y.-S., Su, H.-C., Zhao, J.-L., Liu, S.-S., Chen, J., Liu, W.-R., Ying, G.-G., 2014. Dissemination of antibiotic resistance genes in representative broiler feedlots environments: identification of indicator ARGs and correlations with environmental variables. Environmental science & technology 48, 13120-13129.
Hernandez-Mendoza, A., Quinto, C., Segovia, L., Perez-Rueda, E., 2007. Ligand-binding prediction in the resistance-nodulation-cell division (RND) proteins. Computational biology and chemistry 31, 115-123.
Hillen, W., Berens, C., 1994. Mechanisms underlying expression of Tn 10 encoded tetracycline resistance. Annual review of microbiology 48, 345-369.
Holmes, A.H., Moore, L.S., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P.J., Piddock, L.J., 2016. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet 387, 176-187.
Hong, W., Zeng, J., Xie, J., 2014. Antibiotic drugs targeting bacterial RNAs. Acta Pharmaceutica Sinica B 4, 258-265.
Hong, Y., Brown, D.G., 2009. Variation in bacterial ATP level and proton motive force due to adhesion to a solid surface. Appl. Environ. Microbiol. 75, 2346-2353.
Isarankura-Na-Ayudhya, P., Thippakorn, C., Pannengpetch, S., Roytrakul, S., Isarankura-Na-Ayudhya, C., Bunmee, N., Sawangnual, S., Prachayasittikul, V., 2018. Metal complexation by histidine-rich peptides confers protective roles against cadmium stress in Escherichia coli as revealed by proteomics analysis. PeerJ 6, e5245.
Jeong, J., Song, W., Cooper, W.J., Jung, J., Greaves, J., 2010. Degradation of tetracycline antibiotics: mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere 78, 533-540.
Kahne, D., Leimkuhler, C., Lu, W., Walsh, C., 2005. Glycopeptide and lipoglycopeptide antibiotics. Chemical reviews 105, 425-448.
Kahru, A., Vilu, R., 1983. On characterization of the growth of Escherichia coli in batch culture. Archives of microbiology 135, 12-15.
Kim, K.-R., Owens, G., Kwon, S.-I., So, K.-H., Lee, D.-B., Ok, Y.S., 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water, Air, & Soil Pollution 214, 163-174.
Knapp, C.W., Dolfing, J., Ehlert, P.A., Graham, D.W., 2009. Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental science & technology 44, 580-587.
Koizumi, T., Li, Z.G., 1992. Role of oxidative stress in single‐dose, cadmium‐induced testicular cancer. Journal of Toxicology and Environmental Health, Part A Current Issues 37, 25-36.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T., 2002a. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36, 1202-1211.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B., Buxton, H.T., 2002b. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999− 2000: A national reconnaissance. Environmental science & technology 36, 1202-1211.
Kulshrestha, P., Giese, R.F., Aga, D.S., 2004. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental science & technology 38, 4097-4105.
Laddaga, R.A., Silver, S., 1985. Cadmium uptake in Escherichia coli K-12. Journal of Bacteriology 162, 1100-1105.
Leung, E., Weil, D.E., Raviglione, M., Nakatani, H., 2011. The WHO policy package to combat antimicrobial resistance. Bulletin of the World Health Organization 89, 390-392.
Levy, S.B., 1992. Active efflux mechanisms for antimicrobial resistance. Antimicrobial agents and chemotherapy 36, 695.
Li, Y., Huang, H., Liu, Z., 2013. Photodegradation behavior of three antibiotics with solar simulator. Environ Chem 32, 1513-1517.
Lister, P.D., Wolter, D.J., Hanson, N.D., 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clinical microbiology reviews 22, 582-610.
Loo, C., Mitrakul, K., Voss, I., Hughes, C., Ganeshkumar, N., 2003. Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. Journal of bacteriology 185, 2887-2900.
Maret, W., Moulis, J.M., 2013. The bioinorganic chemistry of cadmium in the context of its toxicity. Metal ions in life sciences 11, 1-29.
Mata, M., Baquero, F., Perez-Diaz, J., 2000. A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiology Letters 187, 185-188.
Mathew, A.G., Cissell, R., Liamthong, S., 2007. Antibiotic resistance in bacteria associated with food animals: a United States perspective of livestock production. Foodborne pathogens and disease 4, 115-133.
May, M.J., Vernoux, T., Leaver, C., Montagu, M.V., Inzé, D., 1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. Journal of Experimental Botany 49, 649-667.
Mcgill, M.R., Jaeschke, H., 2015. A direct comparison of methods used to measure oxidized glutathione in biological samples: 2-vinylpyridine and N-ethylmaleimide. Toxicology mechanisms and methods 25, 589-595.
Miao, X.-S., Bishay, F., Chen, M., Metcalfe, C.D., 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental science & technology 38, 3533-3541.
Mielniczki-Pereira, A.A., Schuch, A.Z., Bonatto, D., Cavalcante, C.F., Vaitsman, D.S., Riger, C.J., Eleutherio, E.C.A., Henriques, J.A.P., 2008. The role of the yeast ATP-binding cassette Ycf1p in glutathione and cadmium ion homeostasis during respiratory metabolism. Toxicology letters 180, 21-27.
Minz, D., Rosenberg, E., Ron, E.Z., 1996. Cadmium binding by bacteria: screening and characterization of new isolates and mutants. FEMS microbiology letters 135, 191-194.
Nagy, Z., Montigny, C., Leverrier, P., Yeh, S., Goffeau, A., Garrigos, M., Falson, P., 2006. Role of the yeast ABC transporter Yor1p in cadmium detoxification. Biochimie 88, 1665-1671.
Najera, I., Lin, C.-C., Kohbodi, G.A., Jay, J.A., 2005. Effect of chemical speciation on toxicity of mercury to Escherichia coli biofilms and planktonic cells. Environmental science & technology 39, 3116-3120.
Neu, H.C., 1992. The crisis in antibiotic resistance. Science 257, 1064-1073.
Ni′Bhriain, N.N., Silver, S., Foster, T.J., 1983. Tn5 insertion mutations in the mercuric ion resistance genes derived from plasmid R100. Journal of bacteriology 155, 690-703.
Nies, D.H., 1992. Resistance to cadmium, cobalt, zinc, and nickel in microbes. Plasmid 27, 17-28.
Nikaido, H., 1996. Multidrug efflux pumps of gram-negative bacteria. Journal of bacteriology 178, 5853.
Nikaido, H., Thanassi, D., 1993. Penetration of lipophilic agents with multiple protonation sites into bacterial cells: tetracyclines and fluoroquinolones as examples. Antimicrobial Agents and Chemotherapy 37, 1393.
Nishino, K., Nikaido, E., Yamaguchi, A., 2007. Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. Journal of bacteriology 189, 9066-9075.
Niyogi, S., Wood, C.M., 2004. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environmental Science & Technology 38, 6177-6192.
Noghabi, K.A., Zahiri, H.S., Yoon, S.C., 2007. The production of a cold-induced extracellular biopolymer by Pseudomonas fluorescens BM07 under various growth conditions and its role in heavy metals absorption. Process biochemistry 42, 847-855.
Oethinger, M., Kern, W.V., Jellen-Ritter, A.S., McMurry, L.M., Levy, S.B., 2000. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance inEscherichia coli in the absence of the AcrAB efflux pump. Antimicrobial Agents and Chemotherapy 44, 10-13.
Okusu, H., Ma, D., Nikaido, H., 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. Journal of bacteriology 178, 306-308.
Pérez, J.M., Pradenas, G.A., Navarro, C.A., Henríquez, D.R., Pichuantes, S.E., Vásquez, C.C., 2006. Geobacillus stearothermophilus LV cadA gene mediates resistance to cadmium, lead and zinc in zntA mutants of Salmonella enterica serovar Typhimurium. Biological research 39, 661-668.
Pacheco, C.C., Passos, J.F., Castro, A.R., Moradas-Ferreira, P., De Marco, P., 2008. Role of respiration and glutathione in cadmium-induced oxidative stress in Escherichia coli K-12. Archives of microbiology 189, 271-278.
Park, J.T., Uehara, T., 2008. How bacteria consume their own exoskeletons (turnover and recycling of cell wall peptidoglycan). Microbiol. Mol. Biol. Rev. 72, 211-227.
Patel, U., Yan, Y.P., Hobbs, F.W., Kaczmarczyk, J., Slee, A.M., Pompliano, D.L., Kurilla, M.G., Bobkova, E.V., 2001. Oxazolidinones mechanism of action: inhibition of the first peptide bond formation. Journal of Biological Chemistry 276, 37199-37205.
Perron, K., Caille, O., Rossier, C., Van Delden, C., Dumas, J.-L., Köhler, T., 2004. CzcR-CzcS, a two-component system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. Journal of Biological Chemistry 279, 8761-8768.
Piddock, L.J., 2006. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clinical microbiology reviews 19, 382-402.
Popowska, M., Rzeczycka, M., Miernik, A., Krawczyk-Balska, A., Walsh, F., Duffy, B., 2012. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrobial agents and chemotherapy 56, 1434-1443.
Pruden, A., Pei, R., Storteboom, H., Carlson, K.H., 2006. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental science & technology 40, 7445-7450.
Rachid, S., Ohlsen, K., Witte, W., Hacker, J., Ziebuhr, W., 2000. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrobial agents and chemotherapy 44, 3357-3363.
Rensing, C., Pribyl, T., Nies, D.H., 1997. New functions for the three subunits of the CzcCBA cation-proton antiporter. Journal of bacteriology 179, 6871-6879.
Rodriguez-Mozaz, S., Chamorro, S., Marti, E., Huerta, B., Gros, M., Sànchez-Melsió, A., Borrego, C.M., Barceló, D., Balcázar, J.L., 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water research 69, 234-242.
Rosewarne, C.P., Pettigrove, V., Stokes, H.W., Parsons, Y.M., 2010a. Class 1 integrons in benthic bacterial communities: abundance, association with Tn402-like transposition modules and evidence for coselection with heavy-metal resistance. FEMS microbiology ecology 72, 35-46.
Rosewarne, C.P., Pettigrove, V., Stokes, H.W., Parsons, Y.M., 2010b. Class 1 integrons in benthic bacterial communities: abundance, association with Tn 402-like transposition modules and evidence for coselection with heavy-metal resistance. FEMS microbiology ecology 72, 35-46.
Ross, I., 1975. Some effects of heavy metals on fungal cells. Transactions of the British Mycological Society 64, 175-193.
Sandrin, T.R., Hoffman, D.R., 2007. Bioremediation of organic and metal co-contaminated environments: effects of metal toxicity, speciation, and bioavailability on biodegradation, Environmental Bioremediation Technologies. Springer, pp. 1-34.
Sassmann, S., Adlassnig, W., Puschenreiter, M., Cadenas, E.J.P., Leyvas, M., Lichtscheidl, I.K., Lang, I., 2015. Free metal ion availability is a major factor for tolerance and growth in Physcomitrella patens. Environmental and Experimental Botany 110, 1-10.
Schlesinger, W.H., 2005. Biogeochemistry. Elsevier.
Schmacht, M., Lorenz, E., Senz, M., 2017. Microbial production of glutathione. World Journal of Microbiology and Biotechnology 33, 106.
Schwarz, S., Cardoso, M., Wegener, H.C., 1992. Nucleotide sequence and phylogeny of the tet (L) tetracycline resistance determinant encoded by plasmid pSTE1 from Staphylococcus hyicus. Antimicrobial agents and chemotherapy 36, 580-588.
Shahid, M., Dumat, C., Aslam, M., Pinelli, E., 2012. Assessment of lead speciation by organic ligands using speciation models. Chemical Speciation & Bioavailability 24, 248-252.
Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., Dumat, C., 2011. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and environmental safety 74, 78-84.
Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N.K., Dumat, C., Rashid, M.I., 2017. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 178, 513-533.
Sidrach-Cardona, R., Hijosa-Valsero, M., Marti, E., Balcázar, J.L., Becares, E., 2014. Prevalence of antibiotic-resistant fecal bacteria in a river impacted by both an antibiotic production plant and urban treated discharges. Science of the Total Environment 488, 220-227.
Silver, S., 1996. Bacterial resistances to toxic metal ions-a review. Gene 179, 9-19.
Speer, B., Bedzyk, L., Salyers, A., 1991. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. Journal of bacteriology 173, 176-183.
Stepanauskas, R., Glenn, T.C., Jagoe, C.H., Tuckfield, R.C., Lindell, A.H., McArthur, J., 2005. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. Environmental science & technology 39, 3671-3678.
Su, H.C., Ying, G.G., Tao, R., Zhang, R.Q., Fogarty, L.R., Kolpin, D.W., 2011. Occurrence of antibiotic resistance and characterization of resistance genes and integrons in Enterobacteriaceae isolated from integrated fish farms in South China. Journal of environmental monitoring : JEM 13, 3229-3236.
Szczepanowski, R., Braun, S., Riedel, V., Schneiker, S., Krahn, I., Pühler, A., Schlüter, A., 2005. The 120 592 bp IncF plasmid pRSB107 isolated from a sewage-treatment plant encodes nine different antibiotic-resistance determinants, two iron-acquisition systems and other putative virulence-associated functions. Microbiology 151, 1095-1111.
Taki, M., 2013. Imaging and sensing of cadmium in cells, Cadmium: From Toxicity to Essentiality. Springer, pp. 99-115.
Tao, C.-W., Hsu, B.-M., Ji, W.-T., Hsu, T.-K., Kao, P.-M., Hsu, C.-P., Shen, S.-M., Shen, T.-Y., Wan, T.-J., Huang, Y.-L., 2014. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Science of the Total Environment 496, 116-121.
Taylor, D.E., Courvalin, P., 1988. Mechanisms of antibiotic resistance in Campylobacter species. Antimicrobial Agents and Chemotherapy 32, 1107.
Thanassi, D.G., Suh, G., Nikaido, H., 1995. Role of outer membrane barrier in efflux-mediated tetracycline resistance of Escherichia coli. Journal of bacteriology 177, 998-1007.
Valko, M., Rhodes, C., Moncol, J., Izakovic, M., Mazur, M., 2006. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-biological interactions 160, 1-40.
Valls, M., De Lorenzo, V., 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS microbiology Reviews 26, 327-338.
Walker-Simmons, M., Atkinson, D.E., 1977. Functional capacities and the adenylate energy charge in Escherichia coli under conditions of nutritional stress. Journal of Bacteriology 130, 676-683.
Wang, A., Crowley, D.E., 2005. Global gene expression responses to cadmium toxicity in Escherichia coli. Journal of bacteriology 187, 3259-3266.
White, C., Gadd, G.M., 1998. Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144, 1407-1415.
Wright, G.D., 2011. Molecular mechanisms of antibiotic resistance. Chemical communications 47, 4055-4061.
Xu, J., Xu, Y., Wang, H., Guo, C., Qiu, H., He, Y., Zhang, Y., Li, X., Meng, W., 2015. Occurrence of antibiotics and antibiotic resistance genes in a sewage treatment plant and its effluent-receiving river. Chemosphere 119, 1379-1385.
Xu, Y., Xu, J., Mao, D., Luo, Y., 2017. Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Environmental pollution 220, 900-908.
Yamina, B., Tahar, B., Marie Laure, F., 2012. Isolation and screening of heavy metal resistant bacteria from wastewater: a study of heavy metal co-resistance and antibiotics resistance. Water Science and Technology 66, 2041-2048.
Yan, S.L., Miao, S.N., Deng, S.Y., Zou, M.J., Zhong, F.S., Huang, W.B., Pan, S.Y., Wang, Q.Z., 2012. ATP bioluminescence rapid detection of total viable count in soy sauce. Luminescence 27, 34-38.
Yang, C., Lin, M., Liao, P., Yeh, H., Chang, B., Tang, T., Cheng, C., Sung, C., Liou, M., 2009. Comparison of antimicrobial resistance patterns between clinical and sewage isolates in a regional hospital in Taiwan. Letters in applied microbiology 48, 560-565.
Zhang, L., Mah, T.-F., 2008. Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. Journal of bacteriology 190, 4447-4452.
張上淳,陳美文,林美智,胡幼圃,2003,台灣人用抗生素與動物用抗生素使用量之調查研究,感染控制雜誌,(13-334-345)。
許育瑄,2015,藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢,國立中央大學環境工程研究所,碩士論文。
黃奕傑,2018,胞外溶解鎘的化學物種組成對於非抗性細菌生長之影響,國立中央大學環境工程研究所,碩士論文。
鄧教義,2018,重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響,國立中央大學環境工程研究所,碩士論文。
指導教授 林居慶(Chu Ching Lin) 審核日期 2019-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明