博碩士論文 106323088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.149.26.40
姓名 林彥廷(Yen-Ting Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高溫高壓汽油主要參考燃料層流和紊流燃燒速度量測與正規化分析
(Measurement and Normalization of laminar and turbulent burning velocities of high temperature, high pressure premixed gasoline primary reference fuel flames)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文定量量測汽油主要參考燃料(Primary Reference Fuel, PRF) 於高溫、高壓條件下之層、紊流燃燒速度(SL、ST),使用體積比為95%異辛烷與5%正庚烷之PRF95預混燃氣。主要研究重點有二:(1)量測液態燃料PRF95球狀火焰之SL和ST,探討在固定方均根紊流擾動速度(u′)條件下,壓力(p)效應對於SL和ST之影響;(2)探討在固定流場紊流雷諾數ReT,flow = u′LI/條件下,壓力效應與ReT,flow對ST之影響,其中LI為紊流積分長度尺度和為運動黏滯係數。實驗在已建立之高溫高壓高紊流強度雙腔體預混燃燒設備中進行,透過內爐十字型燃燒器大水平圓管內兩端之一對10匹馬力馬達所驅動之反向旋轉風扇和空孔板,於十字型燃燒器中心引燃區產生一近似等向性紊流場。因會隨著p增加而下降,故我們在高壓條件下,等比例地調控u′LI之乘積使其與下降幅度相同,以獲得固定ReT,flow值。實驗條件如下:化學計量PRF95燃氣(當量比 = 1.0;有效Lewis數Le ≈ 1.44)、溫度T = 358K和373K、p =1-5 atm、u′ = 1.0-5.4 m/s,以及固定三個不同ReT,flow值(6,700;9,100;11,600),以探討不同p與ReT,flow效應對ST之影響。對於層焰而言,p增加會使SL下降,這是由於壓力效應對於層焰傳遞過程中為一個壓力連鎖反應機制,以H-O2反應為例,關鍵反應式(H1):H + O2 → OH + O為二體分支反應;而反應式(H9):H + O2 + M → HO2 + M為三體抑制反應,當壓力增加時,三體反應較二體反應強烈,因此在高壓條件的整體反應過程中,抑制反應被加強導致SL下降。對於紊焰而言,當u′值固定時,ST值會隨壓力增加而增加,過往認知這是因為火焰厚度會隨壓力增加而減少,使高壓火焰表面易受流力不穩定性(Hydrodynamic Instability,也就是Darrieus-Landau Instability)之影響,火焰表面會產生許多細胞狀結構(Cellular Structure),造成紊焰面積增加而使得ST增加,但過往研究未考慮當p增加會使ReT,flow增加之事實。實驗結果顯示,在固定u′條件下,ST值會隨壓力增加而上升,這很可能是由於因p上升會使得下降進而使ReT,flow增加,致使ST值增加。然而,當在固定ReT,flow條件下,有別於以往認知,ST值則是會隨著p增加而下降,且其趨勢與SL相似,即ST和SL對壓力效應均呈指數下降之關係,這顯示ReT,flow可能是影響ST增加的重要因素。
本論文亦整合先前實驗室之燃燒速度數據,以常用之五組一般通式進行正規化分析:(1) ST,c=0.5/u′ = A(Da)B,其中Damköhler number Da = (LI/u′)(SL/L)、c ̅為平均傳遞變數、L為層流火焰厚度;(2) ST,c=0.5/SL = A(ReT,flame)0.5,其中火焰紊流雷諾數ReT,flame= (u′/SL)(<R>/L)、<R>為平均火焰半徑;(3) ST,c=0.5/SL = A[(u′/SL)(p/p0)]B,其中p0為一大氣壓;(4) ST/u′ = A K B,其中Karlovitz number K = 0.157(u′/SL)2(ReT,flow)-0.5;(5)ST,c=0.5/SL = A(ReT,flame/Le2)B,其中A、B分別為不同一般通式之實驗常數。結果發現,原先分散之正規化ST/SL數據,代入經考量Le數為修正參數之函數後,可收斂合併成單一曲線,五組修正後之一般通式皆展現很好的藕合程度,其中以一般通式(3)有最佳的藕合程度可達(goodness, R2 = 0.90)。結果顯示火焰傳播即使在不同燃料與當量比條件下,依然具有自我傳播相似性。本論文高溫高壓預混紊流燃燒之研究結果,對汽車引擎燃燒研究應有所助益。
摘要(英) This thesis quantitatively measures laminar and turbulent burning velocities (SL and ST) of the premixed PRF95 (primary reference fuel with 95% volume of iso-octane and 5% volume of n-heptane) at high temperature and high pressure conditions. There are two objectives in this thesis: (1) To measure values of SL and ST of spherical premixed flames of PRF95 and investigate the pressure effect on SL and ST by keeping the r.m.s. turbulent fluctuation velocity (u′) constant. (2) To investigate the effect of pressure and turbulent flow Reynolds number (ReT,flow = u′LI/) on ST under constant ReT,flow condition, where LI and  are the integral length scale of turbulence and the kinematic viscosity of reactants respectively. Experiments are conducted in a large dual-chamber, high-pressure, high-temperature, fan-stirred cruciform premixed turbulent explosion facility capable of generating isotropic turbulence for ST measurements of expanding spherical PRF95/air flames. While controlling the product of u′LI in proportion to the decreasing at elevated pressure to obtain the constant ReT,flow value, and we measure SL and ST of PRF95 at the equivalence ratio ( = 1.0, Le ≈ 1.44), T = 358K, and 373K, p = 1-5 atm, u′= 1.0-5.4 m/s, and at three constant ReT,flow = 6,700; 9,100; 11,600 in order to further investigate the ReT,flow effect on ST. Under high pressure condition, SL decreases with increasing pressure, where cellular structures all over the flame surface can be observed. For laminar flames, SL decreases with increasing pressure because SL is effected by a pressure chain reaction mechanism during flame propagating. Take H-O2 reaction for example, key reaction (H1): H + O2 → OH + O is a two-body branching reaction, while reaction (H9): H + O2 + M → HO2 + M is a three-body inhibiting reaction. While by increasing pressure, (H9) is enhanced relative to (H1) because three-body reactions are favored over two-body reactions as pressure increases. Therefore, in the overall reaction at high pressure conditions, the inhibition reaction is enhanced to cause a decrease in SL. For turbulence flames, when under constant u′ condition, ST increases with increasing pressure. In the past, this is because the flame thickness decreases with increasing pressure, making the flame surface interfered with Hydrodynamic Instability (i.e., Darrieus-Landau Instability). Flame surface results in the cellular structures which causes an increase in the area of the turbulent flame and increases the ST. However, previous studies have not considered the fact that pressure increases with the ReT,flow increasing.
Results show that when under the condition of constant u′, the values of ST increase with increasing p, which is mainly due to increase of ReT,flow with increasing p. On the contrary, when under the condition of constant ReT,flow, we find that the values of ST actually decrease with increasing p. Both ST and SL have an exponential decrease in pressure effect which indicates that the ReT,flow may be a key factor affecting the increase of ST.
This thesis also includes previous iso-octane ST at T=358K, 373K, and 423K obtained from data our laboratory using the same methodology, so that the normalization of these data by using five general correlations can be made for comparison as describe below (1) ST,c=0.5/u′ = A(Da)B, where the subscript c is the mean progress variable, Damköhler number Da = (LI/u′)(SL/L), L is laminar flame thickness. (2) ST,c=0.5/SL = A(ReT,flame)0.5, where the turbulent flame Reynolds number ReT,flame= (u′/SL)(<R>/L). (3)ST,c=0.5/SL = A[(u′/SL)(p/p0)]B, where p0 is the atmospheric pressure. (4)ST/u′=AK-0.3, where Karlovitz number K = 0.157(u′/SL)2(ReT,flow)-0.5. (5)ST,c=0.5/SL= A(ReT,flame/Le2)B and A and B are experimental constants of different general correlations. As a result, it is found that the previously dispersed normalized ST/SL data can be converged into a single curve after being substituted into a function that considers the Le number as a correction. The five modified general correlations all show good fitting goodness. Among them, the general correlation (3) has better fitting goodness (R2 = 0.90). The results show that the flame propagation still has self-propagation similarity even though for different fuel and equivalence ratios. The results of this thesis are useful for high temperature and high pressure premixed turbulent combustion applications, such as combustion studies for vehicles engines.
關鍵字(中) ★ 汽油主要參考燃料
★ 高壓高溫預混紊流燃燒速度
★ 流場紊流雷諾數
★ 火焰紊流雷諾數
★ 一般通式
★ 火焰傳播自我相似性
關鍵字(英)
論文目次 目錄
摘要 I
目錄 VI
圖目錄 IX
符號說明 XI
第一章 前言 1
1.1 研究動機 1
1.2 探討之問題 3
1.3 解決方法 4
1.4 論文架構 4
第二章 文獻回顧 6
2.1 汽油主要參考燃料 6
2.2 數值模擬 7
2.3 汽油替代燃料之層流燃燒速度比較 8
2.4 壓力對紊流燃燒速度之影響 10
2.5 紊流燃燒速度之一般通式 11
第三章 實驗設備與方法 19
3.1 高溫高壓預混紊流燃燒設備 19
3.1.1 雙腔體三維十字型燃燒爐 19
3.1.2 燃料供應系統 21
3.2 影像擷取系統 21
3.3 燃氣當量比(Equivalent ratio)計算 23
3.4 火焰傳遞速度 24
3.5 實驗流程 25
第四章 結果與討論 31
4.1火焰燃燒速度 31
4.1.1層流燃燒速度量測 31
4.1.2紊流燃燒速度量測 33
4.2壓力效應對層、紊流燃燒速度之影響 34
4.2.1壓力效應對火焰結構之影響 34
4.2.2流場紊流雷諾數對紊流燃燒速度之影響 35
4.3 紊流燃燒速度之一般通式 36
4.3.1 Bradley et al.之ST一般通式 37
4.3.2 Kobayashi之ST一般通式 38
4.3.3 Chaudhuri之ST一般通式 39
4.3.4 Damköhle number之ST關係式 39
4.3.5 正規化ST之關係式 40
第五章 結論與未來工作 54
5.1 結論 54
5.2 未來工作 55
參考文獻 57
參考文獻 參考文獻
[1]https://www.taipower.com.tw/tc/page.aspx?mid=202&cid=129&cchk=675cea43-9c45-4ae1-80c6-4f18b3b38d8e.
[2] https://www.youtube.com/watch?v=cWHq-Qr903g.
[3] O. Mannaa, M.S. Mansour, W.L. Roberts, S.H. Chung, “Laminar burning velocities at elevated pressures for gasoline and gasoline surrogates associated with RON”, Combustion and Flame, Vol. 162, pp. 2311-2321, 2015.
[4] R. Yang, D. Hariharan, S. Zilg, B. Lawler, S. Mamalis, “Efficiency and Emissions Characteristics of an HCCI Engine Fueled by Primary Reference Fuels”, SAE Technical Paper 2018-01-1255, 2018.
[5] V. S. B. Shankar, M. Sajid, K. Al-Qurashi, N. Atef, I. Alkhesho, A. Ahmed, S. Chung, W. Roberts, " Primary Reference Fuels (PRFs) as Surrogates for Low Sensitivity Gasoline Fuels ", SAE Technical Paper 2016-01-0748, 2016.
[6] M. Chaos, A. Kazakov, Z. Zhao, F. L. Dryer, “A high-temperature chemical kinetic model for primary reference fuels”, International Journal of Chemical Kinetics, Vol. 39, pp. 399-414, 2007.
[7] Y. Huang, C.J. Sung, J.A. Eng, “Laminar flame speeds of primary reference fuels and reformer gas mixtures”, Combustion and Flame, Vol. 139, pp. 239-251, 2004.
[8] Y.H. Liao, W.L. Roberts, “Laminar Flame Speeds of Gasoline Surrogates Measured with the Flat Flame Method”, Energy Fuels, Vol. 30, pp. 1317-1324, 2016.
[9] H. Wei, D. Gao, L. Zhou, S. Petrakides, R. Chen, D. Feng, J. Pan, “Experimental study on laminar flame characteristics of methane-PRF95 dual fuel under lean burn conditions”, Fuel, Vol. 185, pp. 254-262, 2016.
[10] S. Jerzembeck, N. Peters, P. Pepiot-Desjardins, H. Pitsch, “Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation”, Combustion and Flame, Vol. 156, pp. 292-301, 2009.
[11] Z. Zhao, J. P. Conley, A. Kazakov, F. L. Dryer, "Burning velocities of real gasoline fuel at 353 K and 500 K", SAE Technical Paper 2003-01-3265, 2003.
[12] M. Lawes, M. P. Ormsby, C. G. W. Sheppard, R. Woolley, “The turbulent burning velocity of iso-octane/air mixtures”, Combustion and Flame, Vol. 159, pp. 1949-1959, 2012.
[13] 于德維,“高溫高壓預混異辛烷火焰之層流與紊流燃燒速度量測與正規化分析”,國立中央大學機械工程研究所,碩士論文,2017年。
[14] O. Mannaa, P. Brequigny, C. Mounaim-Rousselle, F. Foucher, S. H. Chung, W. L. Roberts, “Turbulent burning characteristics of FACE-C gasoline and TPRF blend associated with the same RON at elevated pressures”, Experimental Thermal and Fluid Science, Vol. 95, pp. 104-114, 2018.
[15] D. Bradley, J. Hynes, M. Lawes, C. G. W. Sheppard, “Limitations to turbulence-enhanced burning rates in lean burn engines”, International Conference on Combustion in Engines. Institution of Mechanical Engineers, London, pp. 17, 1988.
[16] D. Bradley, Z. Chen, J. R. Swithenbank, “Burning rates in turbulent fine Dust-Air explosions”, Twenty-Second Symposium (International) on Combustion, The Combustion Institute, 1988.
[17] R. G. Abdel-Gayed, K. J. Al-Khishali, D. Bradley, “Turbulent burning velocities and flame straining in explosions”, Proc. R. Soc. Lond. A, Vol. 391, pp. 393-414, 1984.
[18] H. Kobayashi, Y. Kawabata, K. Maruta, “Experimental study on general correlation of turbulent burning velocity at high pressure”, Twenty-Seventh Symposium (International) on Combustion, The Combustion Institute, Vol. 27, pp. 941-948, 1998.
[19] S. Chaudhuri, V. Akkerman, C. K. Law, “Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability”, Physical Review Letters, Vol. 84, 2011.
[20] S. S. Shy, C. C. Liu, W. T. Shih, “Ignition transition in turbulent premixed combustion”, Combustion and Flame, Vol. 157, pp. 341-350, 2010.
[21] S. S. Shy, W. J. Lin, J. C. Wei, “An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion”, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, Vol. 456, pp. 1997-2019, 2000.
[22] T. S. Yang, S. S. Shy, “Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements”, Journal of Fluid Mechanics, Vol. 526, pp. 171-216, 2005.
[23] C. C. Liu, S. S. Shy, H. C. Chen, M. W. Peng, “On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure”, Proceedings of the Combustion Institute, Vol. 33, pp. 1293-1299, 2011.
[24] L. J. Jiang, S. S. Shy, W. Y. Li, H. M. Huang, M. T. Nguyen, “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames”, Combustion and Flame, Vol. 172, pp. 173-182, 2016.
[25] C. K. Law, C. J. Sung, H. Wang, T. F. Lu, “Development of Comprehensive Detailed and Reduced Reaction Mechanisms for Combustion Modeling” AIAA J., Vol. 41, pp. 1629-1646, 2003.
[26] S. Dooley, S. H. Won, M. Chaos, J. Heyne, Y. Ju, F. L. Dryer, K. Kumar, C. J. Sung, H. Wang, M. A. Oehlschlaeger, R. J. Santoro, T. A. Litzinger, “A jet fuel surrogate formulated by real fuel properties”, Combustion and Flame, Vol. 157, pp. 2333-2339, 2010.
[27] Z. Chen, M. P. Burke, Y. Ju, “Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames”, Proceedings of the Combustion Institute, Vol. 32, pp. 1253-1260, 2009.
[28] Z. Chen, “On the accuracy of laminar flame speeds measured from outwardly propagating spherical flames: Methane/air at normal temperature and pressure”, Combustion and Flame, Vol. 162, pp. 2442-2453, 2015.
[29] M. T. Nguyen, D. W. Yu, S. S. Shy, “General Correlations of High Pressure Turbulent Burning Velocities with the Consideration of Lewis Number Effect”, Proceedings of the Combustion Institute, Vol.37, pp. 2391-2398, 2019.
[30] G. H. Markstein, Nonsteady Flame Propagation, Pergamon, 1964.
[31] D. Bradley, P. H. Gaskell, X. J. Gu, “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study”, Combustion and Flame, Vol. 104, pp. 176-198, 1996.
[32] S. Chaudhuri, F. Wu, D. Zhu, C. K. Law, “Flame speed and self-similar propagation of expanding turbulent premixed flames”, Physical Review Letters, Vol. 108, 2012.
[33] D. Bradley, M. Lawes, M. S. Mansour, “Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa”, Combustion and Flame, Vol. 158, pp. 123-138, 2011.
[34] H. Kobayashi, “Experimental study of high-pressure turbulent premixed flames”, Experimental Thermal and Fluid Science, Vol 26, pp. 375-387, 2002.
[35] M. T. Nguyen, D. W. Yu, C. Y. Chen, S. S. Shy, “General Correlations of Iso-octane Turbulent Burning Velocities Relevant to Spark Ignition Engines”, Energies, Vol.12, pp. 1848-1860, 2019.
指導教授 施聖洋 審核日期 2019-11-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明