博碩士論文 106521105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.188.228.135
姓名 黃奕齊(Yi-Chi Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 微小化吸收式帶止濾波器之通帶改善
(Miniature Absorptive Bandstop Filters with Passband Improvement)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 共面波導帶通濾波器之研製
★ 微帶耦合線帶通濾波器與雙工器研製★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製
★ K-Band及Q-Band毫米波帶通濾波器設計★ 薄膜製程射頻被動元件設計
★ 微波帶通低雜訊放大器設計★ 積體式微波帶通濾波器之研製
★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列★ 以多重耦合線實現多功能帶通濾波器
★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統★ 以多重耦合線實現單端至平衡帶通濾波器之分析與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以改善吸收式帶止濾波器通帶響應為目標,分為改善低頻通帶植入損耗及高頻通帶頻寬兩部份,且低頻通帶植入損耗版本提出兩種通帶改善方式。
首先,以印刷電路板來實現低頻通帶響應改善電路,止帶中心頻率均為2 GHz,分別使用四分之一波長開路殘段及步階阻抗轉換器兩種方式來改善通帶響應,且改善後仍維持良好的止帶吸收效果。使用開路殘段來改善通帶後,植入損耗小於0.5 dB之通帶頻寬由dc到0.4 GHz增加為dc到0.5 GHz。而使用步階阻抗轉換器來改善,則可依規定要求自訂須改善的頻率,其中通帶中心頻率為1 GHz的設計,植入損耗從0.92 dB改善為0.36 dB;通帶中心頻率為0.67 GHz的設計,植入損耗從0.64 dB改善為0.21 dB。以橋式T線圈取代傳輸線,實作單頻、雙頻及三頻吸收式帶止濾波器通帶響應改善版本,且達到微小化目的,並實作於積體被動元件(IPD)製程。單頻設計方面,與改善前相比,使用開路殘段進行改善後,通帶植入損耗小於1.3 dB從dc到0.32 GHz增加為dc到2.25 GHz。若使用步階阻抗轉換器來改善,單頻版本。通帶中心頻率2.4 GHz的植入損耗從1.1 dB改善到0.66dB;雙頻版本。通帶中心頻率2.4 GHz的植入損耗從1.88 dB改善到0.83dB;三頻版本。通帶中心頻率2.4 GHz的植入損耗從3.43 dB改善到1.4 dB。由以上可知使用此兩種方法皆可達到很好的通帶改善效果,且電路面積亦可大幅縮減。
而高頻通帶頻寬改善則使用雙頻橋式T線圈來達到通帶頻寬增加的效果。使用開路殘段來實現的帶止濾波器原本高低止帶頻率比只有3:1,改善後則可達到4:1,有達到增加頻寬的目的,且電路面積亦由於使用橋式T線圈而能大幅減小。
摘要(英) In this thesis, improving the passband performance of an absorptive bandstop filter (ABSF)is the target of this research. Two cases are considered. One is the insertion loss improvement of the lower passband, and the other is the bandwidth improvement of the upper passband. In addition, two different methods are proposed for improving the insertion loss of the lower passband.
First, design examples of single-band ABSF with lower passband insertion loss are realized on PCB. The stopband center frequency is 2 GHz. Additional open stub or stepped impedance inverter is used to improve the passband insertion loss while maintaining good stopband rejection. Specifically, by introducing an open stub to the conventional ABSF, one can improve the 0.5-dB insertion loss bandwidth of passband from dc-0.4 GHz to dc-0.5 GHz.. On the other hand, by using a stepped impedance inverter, one can reduce the insertion loss of passband with arbitrarily specified passband center frequencies. Two design examples are presented to validate the proposed design theory. For case A, the passband center frequency is 1 GHz and the insertion loss is improved from 0.92 dB to 0.36 dB. For case B, the passband center frequency is 0.67 GHz while the insertion loss is improved from 0.64 dB to 0.21 dB. Next, bridged-T coils are employed to replace the transmission line sections in the original designs so as to reduce the circuit area and achieve multi-band ABSF designs with lower passband insertion loss. Several design examples are realized in GaAs, WIPD and IPD process technologies to validate the proposed design method. Miniaturized single, dual, and triple band ABSFs with passband improvement are proposed. Compared with conventional designs, proposed single-band ABSF employing the open stub features a 1.3-dB insertion loss bandwidth from dc to 2.25 GHz, while that of the conventional design is from dc to 0.32 GHz. In addition, the proposed design with a stepped impedance inverter also features much better passband insertion loss as compared with the conventional designs. For the proposed single-band ABSF, the insertion loss at the passband center frequency of 2.4 GHz is improved from 1.1 dB to 0.66dB. For the proposed dual-band ABSF, the passband insertion loss at 2.4 GHz is improved from 1.88 dB to 0.83dB. For the proposed triple-band ABSF, the passband insertion loss at 2.4 GHz is improved from 3.43 dB to 1.4 dB. All of these circuits mentioned above have a better response in passband and a very compact circuit size.
Finally, ABSF with a wider upper passband bandwidth is proposed by increasing the frequency ratio of the spurious and of the fundamental stopband. The frequency ratio of the conventional ABSF design is 3:1, while the proposed design employing bridged-T coils features a frequency ratio of 4:1. In addition, the circuit area is also much reduced by using bridged-T coils for the ABSF design.
關鍵字(中) ★ 濾波器
★ 吸收式帶止濾波器
關鍵字(英)
論文目次 論文摘要 I
Abstract II
致謝 IV
圖形列表 VII
表格列表 XVI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 3
第二章 吸收式帶止濾波器通帶改善設計 4
2. 1寬頻吸收式帶止濾波器 4
2.1.1 設計原理 4
2. 1. 2 電路實作及性能 6
2. 2以四分之一波長開路殘段改善吸收式帶止濾波器之通帶響應 12
2. 2. 1 電路架構及設計原理 12
2. 2. 2實作與量測 18
2. 3. 以步階阻抗轉換器改善吸收式帶止濾波器之通帶響應 23
2. 3. 1 電路架構及設計原理 23
2. 3 .1. 1公式推導 23
2. 3 .1. 2 參數選擇 30
2. 3. 2 實作與量測 42
2.4 結果與討論 53
第三章 微小化多頻帶吸收式帶止濾波器之通帶改善 62
3.1以四分之一波長開路殘段改善通帶響應 62
3.1.1電路設計 62
3.1.2實作與量測 69
3.2以步階阻抗轉換器改善單頻通帶響應 78
3.2.1電路設計 78
3.2.2實作與量測驗證 81
3.2.2.1砷化鎵積體被動電路製程 81
3.2.2.2實作與量測驗證---砷化鎵積體電路製程 94
3.2.2.3薄膜積體被動元件製程 101
3.3微小化雙頻與三頻吸收式帶止濾波器通帶響應改善 107
3.3.1電路設計 107
3.3.2實作與量測驗證 118
3.3.2.1砷化鎵積體電路製程 118
3.3.2.2薄膜積體被動元件製程 130
3.4 結果與討論 139
第四章 微小化吸收式帶止濾波器高頻通帶響應改善 145
4.1電路設計 145
4.2實作與量測驗證 154
4.3結果與討論 166
第五章 結論 168
參考文獻 [1] 簡世桓, “具有良好選擇度的寬頻吸收式帶止濾波器,” 碩士論文,國立中央大學, June 2017
[2] 李駿華, "無頻寬減損之微小化功率分配器與巴特勒矩陣," 碩士論文 國立中央大學,2011.
[3] 方偉廷, "基於橋式T線圈之微型化切換式波束成型模組," 博士論文 國立中 央大學, 2017.
[4] D. R. Jachowski, “Passive enhancement of resonator Q in microwave notch filters,” IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 1315-1318.
[5] M. A. Morgan and T. A. Boyd, “Theoretical and experimental study of a new class of reflectionless filter,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1214–1221, May 2011.
[6] M. A. Morgan and T. A. Boyd, “Reflectionless filter structures,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1263–1271, April 2015.
[7] J. S. Chieh and J. Rowland, "Quasi-Lumped Element Bridged-T Absorptive Bandstop Filter," IEEE Microwave and Wireless Components Letters, vol. 26, no. 4, pp. 264-266, April 2016.
[8] J. Lee, T. C. Lee, and W. J. Chappell, “Lumped-element realization of absorptive bandstop filter with anomalously high spectral isolation,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 8, pp. 2424–2430, Aug. 2012.
[9] J.-Y. Shao and Y.-S. Lin, “Millimeter-wave bandstop filter with absorptive stopband,” IEEE MTT-S Int. Microw. Symp. Dig., June 2014.
[10] A. C. Guyette, I. C. Hunter, R. D. Pollard, and D. R. Jachowski, “Perfectly-matched bandstop filters using lossy resonators,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 517–520.
[11] J.-Y. Shao and Y.-S. Lin, “Millimeter-wave bandstop filter with absorptive stopband,” IEEE MTT-S Int. Microw. Symp. Dig., June 2014.
[12] J.-Y. Shao and Y.-S. Lin, “Narrowband coupled-line bandstop filter with absorptive stopband,” IEEE Trans. Microw. Theory Techn., vol. 63, no.10, pp. 3469–3478, Oct. 2015.
[13] M. Kong, Y. Wu, Z. Zhuang, Y. Liu and A. A. Kishk, "Compact Wideband Reflective/Absorptive Bandstop Filter With Multitransmission Zeros," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 2, pp. 482-493, Feb. 2019.
[14] L. Qiu, L. Wu, W. Yin and J. Mao, "Absorptive Bandstop Filter With Prescribed Negative Group Delay and Bandwidth," IEEE Microwave and Wireless Components Letters, vol. 27, no. 7, pp. 639-641, July 2017.
[15] R. Gómez-García, J. Muñoz-Ferreras and D. Psychogiou, "Symmetrical Quasi-Reflectionless BSFs," IEEE Microwave and Wireless Components Letters, vol. 28, no. 4, pp. 302-304, April 2018.
[16] Z. Chen, K. Li, D. Qu, X. Zhong, L. Sun and W. Ma, "A novel microstrip absorptive bandstop filter," 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, 2017, pp. 951-954.
[17] D. Psychogiou, R. Gómez-García and D. Peroulis, "Acoustic-Wave-Lumped-Element-Resonator Filters With Equi-Ripple Absorptive Stopbands," IEEE Microwave and Wireless Components Letters, vol. 26, no. 3, pp. 177-179, March 2016.
[18] D. Psychogiou, R. Mao, and D. Perlious, “Series-cascaded absorptive notch-filters for 4G-LTE radios,” IEEE Radio Wireless Symp. Dig., pp. 177-179, Jan. 2015.
[19] D. Psychogiou and R. Gómez-García, "Reflectionless Adaptive RF Filters: Bandpass, Bandstop, and Cascade Designs," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 11, pp. 4593-4605, Nov. 2017.
[20] Y. Morimoto, T. Yuasa, T. Owada, Y. Tahara, H. Miyashita, M. Memarian,
T. Itoh, and M. Miyazaki, “A Multiharmonic Absorption Circuit Using Quasi-Multilayered Striplines for RF Power Amplifiers,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 1, pp. 109-118, Jan. 2017.
[21] 張恩維, “新式微小化雙頻微波被動電路,” 碩士論文,國立中央大學, June 2017
[22] W. Xu, K. Ma and S. Mou, "A new band-stop filter design with triple electric paths for passband extension," 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, 2017, pp. 1-3.
[23] R. Levy, R. V. Snyder and Sanghoon Shin, "Bandstop filters with extended upper passbands," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 6, pp. 2503-2515, June 2006.
[24] A. Gorur, "Bandstop filter with a wider upper passband using microstrip open-loop resonator", Microwave Conference 2001. APMC 2001. 2001 Asia-Pacific, vol. 2, pp. 527-530, 2001.
[25] A. Ebrahimi, W. Withayachumnankul, S. F. Al-Sarawi and D. Abbott, "Compact Second-Order Bandstop Filter Based on Dual-Mode Complementary Split-Ring Resonator," IEEE Microwave and Wireless Components Letters, vol. 26, no. 8, pp. 571-573, Aug. 2016.
[26] W. Xu, K. Ma and S. Mou, "A new band-stop filter design with triple electric paths for passband extension," 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), Haining, 2017, pp. 1-3.
[27] E. J. Naglich, J. Lee, D. Peroulis, "Tunable bandstop filter with a 17-to-l upper passband", Microwave Symposium Digest (MTT) 2012 IEEE MTT-S International, pp. 1-3, 2012.
[28] M. D. Hickle and D. Peroulis, "Tunable absorptive bandstop filter with an ultra-broad upper passband," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 733-736.
[29] W. F. Egan, Practical RF System Design. New York: Wiley, 2003.
[30] J.-S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Micro-wave Applications. New York: Wiley, 2001.
[31] 曾子豪, "無頻寬減損之微小化集總元件被動電路," 碩士論文 國立中央大 學, 2012.
[32] T.-H. Lee, B. Kim, K. Lee, W. J. Chappell, and J. Lee, “Frequency-Tunable Low-Q Lumped-Element Resonator Bandstop Filter With High Attenuation,” IEEE Microw. Mag., vol. 64, no. 11, pp. 3549-3556, Nov. 2016.
[33] B. Kim, J. Lee, J. Lee, B. Jung and W. J. Chappell, "RF CMOS Integrated On-Chip Tunable Absorptive Bandstop Filter Using Q-Tunable Resonators," in IEEE Transactions on Electron Devices, vol. 60, no. 5, pp. 1730-1737, May 2013.
[34] R. Gómez-García, J. Mu?Ferreras and D. Psychogiou, "Split-Type Input-Reflectionless Multiband Filters," IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 981-983, Nov. 2018.
[35] W. R. Eisenstadt and Y. Eo, "S-parameter-based IC interconnect transmission line characterization," IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol. 15, no. 4, pp. 483-490, 1992.
指導教授 林祐生(Yo-Shen Lin) 審核日期 2019-11-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明