博碩士論文 103383604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.23.101.82
姓名 阮明進(NGUYEN MINH TIEN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(A Comparative Study of Conventional Spark Ignition and Nanosecond Repetitively Pulsed Discharge in Premixed Turbulent Combustion)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,使用奈秒級重複脈衝放電(Nanosecond Repetitively Pulsed, NRP)的貧油預
混燃燒技術引起了廣泛的關注,因為它具有提高熱效率和減少火花引燃(Spark Ignition,
SI)引擎廢氣排放的巨大潛力。然而,貧油預混燃燒的挑戰之一是失效點火的問題,尤
其是火花引擎在極端條件下進行引燃時,即高壓(p)、高溫(T)和高均方根紊流擾動速度
(u′)條件下越容易發生失效點火的問題。此外,大多數 NRP 文獻屬於探討層流條件之研
究,僅少數文獻探討紊流條件之研究。而 NRP 過往的文獻中,缺乏探討近似等向性紊
流場條件的相關研究,致使我們無法充分了解 NRP 放電的全部潛力。因此,對貧油燃
氣的引燃過程及其隨後的火焰傳播過程有更好的理解,是開發可靠且高效率的引燃系
統不可或缺的關鍵技術,進而於高熱效率 SI 引擎中實現穩定的貧油燃燒。因此,本論
文將使用兩種不同的放電方法,來探討碳氫燃料之燃燒現象:含傳統單次火花放電
(Conventional Single Spark Discharge, CSSD)和 NRP 放電。
實驗在高溫高壓雙腔體預混燃燒設備中執行,可透過一對 10 匹馬力馬達所驅動之
反向旋轉風扇,於十字型燃燒器中心引燃區產生一近似等向性紊流場。實驗條件如下:
共有三種不同的燃氣混合物,包括貧油和富油氫氣(分別為當量比 = 0.18;有效 Lewis
數 Le ≈ 0.3 << 1 以及 = 5.1;Le ≈ 2.3 >> 1),貧油異辛烷( = 0.8;Le ≈ 2.98 >> 1) 以
及貧油正丁烷( = 0.7;Le ≈ 2.1 >> 1)。上述燃料使用 CSSD 於不同探針間距(dgap)以及
不同 u′值條件下,進行引燃實驗,探討偏好擴散效應(Le 效應)、dgap 以及紊流消散對兩
種不同引燃現象的耦合效應(coupling effects),分別為最小引燃能量(Minimum Ignition
Energy, MIE)轉折以及紊流促進引燃(Turbulent Facilitated Ignition, TFI)現象。為了進行比
較,在 dgap = 0.8 mm 條件下,引燃貧油正丁烷燃氣,使用 NRP 放電在一定範圍的重複
脈衝頻率(Pulse Repetitive Frequency, PRF = 5〜70 kHz),並固定 11 個連續脈衝,使其
累積總引燃能量 Etot約等於 23 mJ,其中 Etot約等同於使用 CSSD 在 dgap = 0.8 mm 於正丁
烷燃氣中所獲得的 50%引燃機率之層流 MIE。
CSSD 結果顯示,由於火核的幾何形狀和偏好擴散之間的耦合效應,TFI 現象僅出
現在當 dgap < 1 mm 時且 Le >> 1 的混合燃氣中。此外,紊流 MIE 會隨 u′的增加先呈現出
下降趨勢而後上升,呈現一非單調性的曲線。結果顯示,當 u′大於某些取決於燃料性
質的臨界值時,紊流效應會重新確立其主導地位,並使引燃更加困難。然而,在 dgap >iii
1 mm 的條件下,火核呈似棒狀且火核之正曲率很小或可忽略不計,故偏好擴散對火核
之影響可忽略不計,即使對於 Le >> 1 的混合物,亦沒有發現 TFI 之現象。本論文發現
除了當在 dgap > 1 mm 時,沒有 TFI 現象,亦發現隨著 u′的增加,且在 Le >> 1、dgap > 1
mm 條件下,亦會產生 MIE 轉折之現象。此外,對於 Le << 1 的貧油氫燃氣混合物,在
任何 dgap條件下皆沒有發現 TFI 現象,但當 dgap = 0.3 mm << 1 mm 時,有發現 MIE 轉折
現象之存在。
CSSD 和 NRP 放電在 dgap = 0.8 mm、Le ≈ 2.1 >> 1 的相同貧油正丁烷燃氣條件下進
行比較,透過使用相同的放電能量 Etot = MIEL ≈ 23 mJ,本論文發現 CSSD 的層流引燃
概率(Laminar Ignition Probability, Pig,L)為 50%,而對於 NRP 放電,Pig,L為 0% ~ 90%,
其值取決於 PRF,其中在 PRF = 20 kHz 時有最高的 Pig,L = 90%。當 PRF = 20 kHz,即最
高的 Pig,L 之發生。可歸因於放電頻率的增益效應(synergistic effect),其與放電時產生於
電極尖端之反應物向內流循環頻率(inward reactant flow recirculation frequency)之同步效
應。此外,本論文發現紊流引燃在大部分的 PRFs 中均使引燃較困難,除了在 PRF = 60
kHz 在 u′ = 0.5 m/s 時,有最高的 Pig,L為 37 %大於在 u′ = 0 時的 Pig,L = 34 %,顯示與
CSSD 相似之 TFI 現象。
摘要(英) Recently, premixed lean combustion using the nanosecond repetitively pulsed (NRP)
discharge (plasma-assisted combustion) has attracted many attentions because of its great
potential for increasing thermal efficiency and reducing the exhaust emissions of spark ignition
(SI) engines. However, one of the challenges for fuel-lean premixed combustion is the misfire
problem, especially when spark ignition takes place at extreme conditions relevant to SI engine
conditions, i.e. high pressure (p), high temperature (T), and high r.m.s turbulent fluctuation
velocity (u′). In addition, most NRP studies are in quiescence mixture condition with a few in
flowing mixtures having large mean velocity. The lack of NRP results in near-isotropic
turbulence with negligible mean velocities prevents us to fully understand the full potential of
the NRP discharge. Thus, a better understanding of ignition processes of lean fuel/air mixtures
and their subsequent flame propagation is indispensable for the development of a reliable and
efficient ignition system, so that stable lean-burn combustion in high-thermal efficiency SI
engines could be achieved. This motivates us to study the ignition of lean hydrocarbon fuels
using two different discharge methods: conventional single spark discharge (CSSD) and NRP
discharge.
Experiments were performed in a large dual-chamber, constant temperature/pressure, and
fan-stirred explosion facility capable of generating near-isotropic turbulence using three
different fuel/air mixtures, including lean and rich hydrogen (equivalence ratio f = 0.18 and f
= 5.1 with the effective Lewis number Le ~ 0.3 << 1 and Le ~ 2.3 >> 1, respectively), lean isooctane (f
= 0.8 with Le ~ 2.98 >> 1), and lean n-butane (f = 0.7 with Le ~ 2.1 >> 1). These
mixtures were ignited by CSSD at different spark gaps (dgap) over a range of u′ to understand
the coupling effects of differential diffusion (Le effect), dgap, and turbulent dissipation on two
distinct ignition phenomena: Minimum Ignition Energy (MIE) transition versus Turbulent
Facilitated Ignition (TFI). For comparison, the same lean n-butane/air mixture was ignited at
dgap = 0.8 mm using the NRP discharge over a range of pulse repetitive frequency (PRF = 5~70
kHz) with a fixed train of 11 pulses having a constant total ignition energy Etot ~ 23 mJ, where
Etot equals to the laminar MIE at 50% ignitability of the same lean n-butane/air obtained by
using CSSD at the same dgap = 0.8 mm.
The CSSD results show that TFI only occurs at Le >> 1 mixtures and at sufficiently small
dgap < 1 mm owing to the coupling effects between the embryonic kernel geometry and
differential diffusion. Further, turbulent MIE exhibits a first decrease and then increase non-v
monotonicity with increasing u. This reveals that turbulent dissipation re-asserts its dominance
and renders the ignition more difficult when u is greater than some critical values depending
on fuel types. At modest dgap > 1 mm where the embryonic kernel is a rod-like geometry with
very small or negligible positive curvature, the effect of differential diffusion is negligible and
TFI disappears even for Le >> 1 mixtures. Not only there is no TFI when dgap > 1 mm, but also
we find MIE transition for Le >> 1 and at dgap > 1 mm when increasing u. MIE transition means
that values of MIE first gradually increase with increasing u and then rapidly increase with
increasing u when u is greater than some critical value. Moreover, there is no TFI for the lean
hydrogen/air mixture with Le << 1, regardless of dgap, where MIE transition is found when dgap
= 0.3 mm << 1 mm.
From the comparison between CSSD and NRP discharge using the same energy Etot = MIEL
~ 23 mJ for the same lean n-butane/air mixture with Le ~ 2.1 >> 1 at dgap = 0.8 mm we find that
the laminar ignition probability (Pig,L) is 50% for CSSD, while Pig,L varies from 0% to 90% for
NRP discharge, depending on PRF, where the highest Pig,L = 90% occurs at PRF = 20 kHz,
being detrimental with higher PRFs. The highest Pig,L at PRF = 20 kHz could be attributed to
the coupling effects from the synergistic effect and the inward reactant flow recirculation
frequency near the electrode tips. Furthermore, we find that turbulence renders ignition more
difficult at most PRFs except at PRF = 60 kHz where the highest Pig = 37% occurs at u′= 0.5
m/s, Pig = 34% at u′= 0, showing similar TFI as that found by using CSSD.
關鍵字(中) ★ 最小引燃能量轉折
★ 紊流促進引燃
★ 偏好擴散效應
★ 熱損失效應
★ 紊流效應
★ 傳統單次火花放電
★ 奈秒級重複脈衝放電
關鍵字(英) ★ Minimum ignition Energy transition
★ turbulent facilitated ignition
★ differential diffusion
★ heat losses
★ turbulent dissipation
★ conventional single spark discharge
★ nanosecond repetitively pulsed discharge
論文目次 中文摘要...............................................................................................................................ii
ABSTRACT ......................................................................................................................... iv
Acknowledgments ................................................................................................................ vi
Contents...............................................................................................................................vii
List of figures ....................................................................................................................... ix
List of tables ........................................................................................................................xii
Nomenclature .....................................................................................................................xiii
Chapter 1. Introduction .......................................................................................................... 1
1.1. Motivation................................................................................................................... 1
1.2. Fundamental ignition studies of conventional spark ignition and its application........... 1
1.3. Plasma Assisted Combustion: Nanosecond repetitively pulsed discharge..................... 5
1.4. Goal of this study ........................................................................................................ 6
1.5. Thesis outline.............................................................................................................. 7
Chapter 2. Basic and statistical nature of the electric spark ignition........................................ 8
2.1. Ignition probability...................................................................................................... 8
2.2. Minimum ignition energy (MIE): Definition and Measurement ................................... 9
2.3. Effect of spark gap .................................................................................................... 10
2.4. Effect of differential diffusion ................................................................................... 11
2.5. Critical flame kernel radius........................................................................................ 12
Chapter 3. Experimental Setup............................................................................................. 21
3.1. Experimental apparatus ............................................................................................. 21
3.2. Temperature measurements in 3D cruciform burner................................................... 22
3.3. Ignition Energy and Its Probability Measurement ...................................................... 24
3.3.1. Conventional Spark Electrode ............................................................................ 24
3.3.2. Nanosecond Repetitive Discharge....................................................................... 25
3.4. Experimental Procedure ............................................................................................ 26
Chapter 4. Conventional Spark Ignition Discharge ............................................................... 33
4.1. “Go” and “No Go”..................................................................................................... 33
4.2. MIE of Le < 1 mixture [53]........................................................................................ 34
4.3. MIE of Le > 1 mixture............................................................................................... 35
4.4. Insight into two distinct phenomena: TFI and MIE Transition [53] ............................ 35
4.5. The criterion of MIE transition and its implication on Peters diagram........................ 40viii
4.6. MIE transition model................................................................................................. 43
Chapter 5. Nanosecond Repetitively Pulsed Discharge......................................................... 62
5.1. Ignition probability (Pig,L) and kernel development in quiescence.............................. 62
5.2. Ignition delay time as a function of PRF.................................................................... 64
5.3. Ignition probability in near-isotropic turbulent condition ........................................... 65
Chapter 6. Conclusion.......................................................................................................... 71
6.1. Summary................................................................................................................... 71
6.2. Future work............................................................................................................... 73
Bibliographies...................................................................................................................... 74
參考文獻 [1] International Energy Agency, Energy technology perspectives 2017: Catalysing energy technology transformations, 2017. https://doi.org/10.1787/energy_tech-2017-en
[2] Y. Ju, W. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energy Combust. Sci. 48 (2015) 21-83.
[3] K. Maruta, H. Nakamura, Super lean-burn in SI engine and fundamental combustion studies, J. Combust. SOC. Japan 58 (2016) 9-19.
[4] N. Hayashi, A. Sugiura, Y. Abe, K. Suzuki, Development of ignition technology for dilute combustion engines, SAE Int. J. Engines 10 (2017) 984-995.
[5] K. Nakata, S. Nogawa, D. Takahashi, Y. Yoshihara, et al., Engine technologies for achieving 45% thermal efficiency of S.I. engine, SAE Int. J. Engines 9 (2015) 179-192.
[6] B. Lewis, G. von Elbe, Combustion, Flames and Explosions of Gases, 3rd ed., Academic Press, Orlando, 1987.
[7] L.J. Jiang, S. Shy, M.T. Nguyen, S.Y. Huang, D.W. Yu, Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion, Combust. Flame 187 (2018) 87-95.
[8] D. Jung, N. Iida, An investigation of multiple spark discharge using multi-coil ignition system for improving thermal efficiency of lean SI engine operation, Appl Energy 212 (2018) 322-332.
[9] S. Tsuboi, S. Miyokawa, M. Matsuda, T. Yokomori, N. Iida, Influence of spark discharge characteristics on ignition and combustion process and the lean operation limit in a spark ignition engine, Appl Energy 250 (2019) 617-632.
[10] J. Moorhouse, A. Williams, T.E. Maddison, An investigation of the minimum ignition energies of some C1 to C7 hydrocarbons, Combust. Flame 23 (1974) 203-213.
[11] D.R. Ballal, A.H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distance, Symp. Int. Combust. 15 (1975) 1473-1481.
[12] R. Maly, M. Vogel, Initiation and propagation of flame fronts in lean CH4-air mixtures by the three modes of the ignition spark, Symp. Int. Combust. 17 (1979) 821-831.
[13] M. Kono, K. Hatori, K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, Symp. Int. Combust. 20 (1985) 133-140.
[14] G.F.W. Ziegler, E.P. Wagner, R.R. Maly, Ignition of lean methane-air mixtures by high pressure glow and ARC discharges, Symp. Int. Combust. 20 (1985) 1817-1824.
[15] D. Bradley, F.K.K. Lung, Spark ignition and the early stages of turbulent flame propagation, Combust. Flame 69 (1987) 71-93.
[16] M. Kono, K. Niu, T. Tsukamoto, Y. Ujiie, Mechanism of flame kernel formation produced by short duration sparks, Symp. Int. Combust. 22 (1989) 1643-1649.
[17] Y. Ko, R.W. Anderson, V.S. Arpaci, Spark ignition of propane-air mixtures near the minimum ignition energy: Part I. An experimental study, Combust. Flame 83 (1991) 75-87.
[18] K. Ishii, O. Aoki, Y. Ujiie, M. Kono, Investigation of ignition by composite sparks under high turbulence intensity conditions, Symp. Int. Combust. 24 (1992) 1793-1798.
[19] T. Kravchik, E. Sher, J.B. Heywood, From spark ignition to flame initiation, Combust. Sci. Technol. 108 (1995) 1-30.
[20] C.F. Kaminski, J. Hult, M. Aldén, S. Lindenmaier, et al., Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations, Proc. Combust. Inst. 28 (2000) 399-405.
[21] T. Horstmann, W. Leuckel, B. Maurer, U. Maas, Influence of turbulent flow conditions on the ignition of flammable gas/air mixtures, Process Saf. Prog. 20 (2001) 215-224.
[22] C.C. Huang, S.S. Shy, C.C. Liu, Y.Y. Yan, A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes, Proc. Combust. Inst. 31 (2007) 1401-1409.
[23] S.S. Shy, W.T. Shih, C.C. Liu, More on minimum ignition energy transition for lean premixed turbulent methane combustion in flamelet and distributed regimes, Combust. Sci. Technol. 180 (2008) 1735-1747.
[24] S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341-350.
[25] S.P.M. Bane, Spark Ignition: Experimental and numerical investigation with aplication to aviation safety, PhD dissertation, California Institute of Technology, 2010. http://thesis.library.caltech.edu/5868/1/thesis_SBane.pdf.
[26] M.W. Peng, S.S. Shy, Y.W. Shiu, C.C. Liu, High pressure ignition kernel development and minimum ignition energy measurements in different regimes of premixed turbulent combustion, Combust. Flame 160 (2013) 1755-1766.
[27] S.S. Shy, Y.W. Shiu, L.J. Jiang, C.C. Liu, S. Minaev, Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm, Proc. Combust. Inst. 36 (2017) 1785-1791.
[28] R.K. Eckhoff, M. Ngo, W. Olsen, On the minimum ignition energy (MIE) for propane/air, J Hazard Mater 175 (2010) 293-297.
[29] S.P.M. Bane, J.E. Shepherd, E. Kwon, A.C. Day, Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures, Int. J. Hydrogen Energy 36 (2011) 2344-2350.
[30] S. Coronel, R. Mével, S.P.M. Bane, J.E. Shepherd, Experimental study of minimum ignition energy of lean H2-N2O mixtures, Proc. Combust. Inst. 34 (2013) 895-902.
[31] S.P.M. Bane, J.L. Ziegler, P.A. Boettcher, S.A. Coronel, J.E. Shepherd, Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen, J. Loss Prevent. Process Ind. 26 (2013) 290-294.
[32] A. Wähner, G. Gramse, T. Langer, M. Beyer, Determination of the minimum ignition energy on the basis of a statistical approach, J. Loss Prevent. Process Ind. 26 (2013) 1655-1660.
[33] S.P.M. Bane, J.L. Ziegler, J.E. Shepherd, Investigation of the effect of electrode geometry on spark ignition, Combust. Flame 162 (2015) 462-469.
[34] K. Ishii, T. Tsukamoto, Y. Ujiie, M. Kono, Analysis of ignition mechanism of combustible mixtures by composite sparks, Combust. Flame 91 (1992) 153-164.
[35] N. Chakraborty, E. Mastorakos, R.S. Cant, Effects of turbulence on spark ignition in inhomogeneous mixtures: A direct numerical simulation (DNS) study, Combust. Sci. Technol. 179 (2007) 293-317.
[36] J. Han, H. Yamashita, N. Hayashi, Numerical study on the spark ignition characteristics of a methane–air mixture using detailed chemical kinetics: Effect of equivalence ratio, electrode gap distance, and electrode radius on MIE, quenching distance, and ignition delay, Combust. Flame 157 (2010) 1414-1421.
[37] J. Han, H. Yamashita, N. Hayashi, Numerical study on the spark ignition characteristics of hydrogen–air mixture using detailed chemical kinetics, Int. J. Hydrogen Energy 36 (2011) 9286-9297.
[38] Z. Chen, M.P. Burke, Y. Ju, On the critical flame radius and minimum ignition energy for spherical flame initiation, Proc. Combust. Inst. 33 (2011) 1219-1226.
[39] E. Sereshchenko, R. Fursenko, S. Minaev, S. Shy, Numerical simulations of premixed flame ignition in turbulent flow, Combust. Sci. Technol. 186 (2014) 1552-1561.
[40] N. Saito, Y. Minamoto, B. Yenerdag, M. Shimura, M. Tanahashi, Effects of turbulence on ignition of methane–air and n-heptane–air fully premixed mixtures, Combust. Sci. Technol. 190 (2017) 452-470.
[41] C. Turquand d’Auzay, V. Papapostolou, S.F. Ahmed, N. Chakraborty, On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures, Combust. Flame 201 (2019) 104-117.
[42] F.A. Williams, Combustion theory: The fundamental theory of chemically reacting flow systems, 2nd ed., Westview Press, Benjamin Cummings, California, 1994.
[43] I. Glassman, R.A. Yetter, N.G. Glumac, Ignition, in: Combustion, Academic Press, Boston, 2015, pp. 363-391.
[44] C.K. Law, Combustion Physics, in, Cambridge University Press, New York, 2006.
[45] D.R. Ballal, A.H. Lefebvre, Ignition and flame quenching of flowing heterogeneous fuel-air mixtures, Combust. Flame 35 (1979) 155-168.
[46] M. Champion, B. Deshaies, G. Joulin, K. Kinoshita, Spherical flame initiation: Theory versus experiments for lean propane-air mixtures, Combust. Flame 65 (1986) 319-337.
[47] D.R. Ballal, A.H. Lefebvre, A general model of spark ignition for gaseous and liquid fuel-air mixtures, Symp. Int. Combust. 18 (1981) 1737-1746.
[48] P.S. Tromans, R.M. Furzeland, An analysis of Lewis number and flow effects on the ignition of premixed gases, Symp. Int. Combust. 21 (1988) 1891-1897.
[49] P. Boudier, S. Henriot, T. Poinsot, T. Baritaud, A model for turbulent flame ignition and propagation in spark ignition engines, Symp. Int. Combust. 24 (1992) 503-510.
[50] F. Wu, A. Saha, S. Chaudhuri, C.K. Law, Facilitated ignition in turbulence through differential diffusion, Phys. Rev. Lett. 113 (2014) 024503.
[51] A. Saha, S. Yang, C.K. Law, On the competing roles of turbulence and differential diffusion in facilitated ignition, Proc. Combust. Inst. 37 (2019) 2383-2390.
[52] S.S. Shy, M.T. Nguyen, S.-Y. Huang, C.-C. Liu, Is turbulent facilitated ignition through differential diffusion independent of spark gap?, Combust. Flame 185 (2017) 1-3.
[53] S.S. Shy, M.T. Nguyen, S.Y. Huang, Effects of electrode spark gap, differential diffusion, and turbulent dissipation on two distinct phenomena: Turbulent facilitated ignition versus minimum ignition energy transition, Combust. Flame 205 (2019) 371-377.
[54] C. Cardin, B. Renou, G. Cabot, A.M. Boukhalfa, Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames: New insight into ignition transition, Combust. Flame 160 (2013) 1414-1427.
[55] C. Cardin, B. Renou, G. Cabot, A. Boukhalfa, Experimental analysis of laser-induced spark ignition of lean turbulent premixed flames, CR Mecanique 341 (2013) 191-200.
[56] X. Yu, S. Yu, Z. Yang, Q. Tan, et al., Improvement on energy efficiency of the spark ignition system, (2017).
[57] T. Alger, J. Gingrich, B. Mangold, C. Roberts, A continuous discharge ignition system for EGR limit extension in SI engines, SAE Int. J. Engines 4 (2011) 677-692.
[58] X. Yu, Z. Yang, S. Yu, X. huo, et al., Boosted current spark strategy for lean burn spark ignition engines, (2018).
[59] S.V. Pancheshnyi, D.A. Lacoste, A. Bourdon, C.O. Laux, Ignition of propane–air mixtures by a repetitively pulsed nanosecond discharge, IEEE Trans. Plasma Sci. 34 (2006) 2478-2487.
[60] A.A. Tropina, A.P. Kuzmenko, S.V. Marasov, D.V. Vilchinsky, Ignition system based on the nanosecond pulsed discharge, IEEE Trans. Plasma Sci. 42 (2014) 3881-3885.
[61] S. Lovascio, T. Ombrello, J. Hayashi, S. Stepanyan, et al., Effects of pulsation frequency and energy deposition on ignition using nanosecond repetitively pulsed discharges, Proc. Combust. Inst. 36 (2017) 4079-4086.
[62] D. Xu, Thermal and hydrodynamic effects of nanosecond discharges in air and application to plasma-assisted combustion, Ecole Centrale Paris, 2013. https://tel.archives-ouvertes.fr/tel-00978527.
[63] M. Castela, S. Stepanyan, B. Fiorina, A. Coussement, et al., A 3-D DNS and experimental study of the effect of the recirculating flow pattern inside a reactive kernel produced by nanosecond plasma discharges in a methane-air mixture, Proc. Combust. Inst. 36 (2017) 4095-4103.
[64] S. Lovascio, J. Hayashi, S. Stepanyan, G.D. Stancu, C.O. Laux, Cumulative effect of successive nanosecond repetitively pulsed discharges on the ignition of lean mixtures, Proc. Combust. Inst. 37 (2019) 5553-5560.
[65] D.A. Xu, D.A. Lacoste, C.O. Laux, Ignition of Quiescent Lean Propane–Air Mixtures at High Pressure by Nanosecond Repetitively Pulsed Discharges, Plasma Chem. Plasma P. 36 (2015) 309-327.
[66] A.P. Kelley, G. Jomaas, C.K. Law, Critical radius for sustained propagation of spark-ignited spherical flames, Combust. Flame 156 (2009) 1006-1013.
[67] Z. Chen, M.P. Burke, Y. Ju, Effects of Lewis number and ignition energy on the determination of laminar flame speed using propagating spherical flames, Proc. Combust. Inst. 32 (2009) 1253-1260.
[68] D.A. Xu, M.N. Shneider, D.A. Lacoste, C.O. Laux, Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air, J. Phys. D: Appl. Phys. 47 (2014).
[69] J.K. Lefkowitz, P. Guo, T. Ombrello, S.H. Won, et al., Schlieren imaging and pulsed detonation engine testing of ignition by a nanosecond repetitively pulsed discharge, Combust. Flame 162 (2015) 2496-2507.
[70] J.K. Lefkowitz, T. Ombrello, An exploration of inter-pulse coupling in nanosecond pulsed high frequency discharge ignition, Combust. Flame 180 (2017) 136-147.
[71] R. Ono, M. Nifuku, S. Fujiwara, S. Horiguchi, T. Oda, Gas temperature of capacitance spark discharge in air, Journal of Applied Physics 97 (2005) 123307.
[72] R. Ono, M. Nifuku, S. Fujiwara, S. Horiguchi, T. Oda, Minimum ignition energy of hydrogen–air mixture: Effects of humidity and spark duration, J. Electrostat 65 (2007) 87-93.
[73] A. Kumamoto, H. Iseki, R. Ono, T. Oda, Measurement of minimum ignition energy in hydrogen-oxygen-nitrogen premixed gas by spark discharge, J. Phys. Conf. Ser 301 (2011) 012039.
[74] E. Randeberg, W. Olsen, R.K. Eckhoff, A new method for generation of synchronised capacitive sparks of low energy, J. Electrostat 64 (2006) 263-272.
[75] M. Thiele, J. Warnatz, A. Dreizler, S. Lindenmaier, et al., Spark ignited hydrogen/air mixtures: two dimensional detailed modeling and laser based diagnostics, Combust. Flame 128 (2002) 74-87.
[76] J.J. Lee, J.E. Shepherd, in, Graduate Aeronautical Laboratories, California Institute of Technology, 2000.
[77] J.D. Colwell, A. Reza, Hot surface ignition of automotive and aviation fluids, Fire Technology 41 (2005) 105-123.
[78] U. Maas, J. Warnatz, Ignition processes in hydrogen-oxygen mixtures, Combust. Flame 74 (1988) 53-69.
[79] A. Frendi, M. Sibulkin, Dependence of minimum ignition energy on ignition parameters, Combust. Sci. Technol. 73 (1990) 395-413.
[80] T. Sloane, P. Ronney, A comparison of ignition phenomena modelled with detailed and simplified kinetics, Combust. Sci. Technol. 88 (1993) 1-13.
[81] H.J. Kim, S.H. Chung, C.H. Sohn, Numerical calculation of minimum ignition energy for hydrogen and methane fuels, KSME International Journal 18 (2004) 838-846.
[82] I.B. Zeldovich, G.I. Barenblatt, V.B. Librovich, G.M. Makhviladze, Mathematical theory of combustion and explosions, Consultants Bureau,New York, NY, United States, 1985.
[83] B. Deshaies, G. Joulin, On the initiation of a spherical flame kernel, Combust. Sci. Technol. 37 (1984) 99-116.
[84] L. He, Critical conditions for spherical flame initiation in mixtures with high Lewis numbers, Combust. Theor. Model 4 (2000) 159-172.
[85] G. Joulin, T. Mitani, Linear stability analysis of two-reactant flames, Combust. Flame 40 (1981) 235-246.
[86] C.C. Liu, S.S. Shy, H.C. Chen, M.W. Peng, On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst. 33 (2011) 1293-1299.
[87] C. Liu, S.S. Shy, M. Peng, C. Chiu, Y. Dong, High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame 159 (2012) 2608-2619.
[88] L.J. Jiang, S.S. Shy, W.Y. Li, H.M. Huang, M.T. Nguyen, High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames, Combust. Flame 172 (2016) 173-182.
[89] M.T. Nguyen, D.W. Yu, S.S. Shy, General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect, Proc. Combust. Inst. 37 (2019) 2391-2398.
[90] S.S. Shy, W.J. Lin, K.Z. Peng, High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst. 28 (2000) 561-568.
[91] S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. A 456 (2000) 1997-2019.
[92] T.S. Yang, S.S. Shy, Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements, J. Fluid Mech. 526 (2005) 171-216.
[93] D.A. Xu, D.A. Lacoste, C.O. Laux, Ignition of quiescent lean propane–air mixtures at high pressure by nanosecond repetitively pulsed discharges, Plasma Chem. Plasma P. 36 (2016) 309-327.
[94] W. Liang, C.K. Law, Z. Chen, Ignition of hydrogen/air mixtures by a heated kernel: Role of Soret diffusion, Combust. Flame 197 (2018) 416-422.
[95] N. Chakraborty, R.S. Cant, Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Physics of Fluids 17 (2005).
[96] M.T. Nguyen, S.S. Shy, Y.R. Chen, B.L. Lin, S.Y. Huang, Conventional Spark versus Nanosecond Repetitively Pulsed Discharge for A Turbulent Facilitated Ignition Phenomenon, 38th Internal Symposium on Combustion (2020).
[97] N. Iida, Research and development of super-lean burn for high efficiency SI engine, The Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines 2017.9 (2017) Plenary Lecture (PL-1).
指導教授 施聖洋(SHENQYANG SHY) 審核日期 2019-12-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明