博碩士論文 105326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.119.160.154
姓名 李玉蓮(Yu-Lien Lee)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 煅燒白雲石降低廢車破碎殘餘物催化氣化 過程衍生污染物排放之可行性研究
(Feasibility of pollutants emission reduction in catalytic gasification of automobile shredder residue (ASR) by calcined dolomite)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-12-13以後開放)
摘要(中) 本研究嘗試利用煅燒白雲石取代部分氣泡式流體化床氣化系統之床砂,並評估作為催化劑提升廢車破碎殘餘物(Automobile Shredder Residue, ASR),氣化產能之效率。試驗控制條件分別包括當量比(Equivalence ratio, ER)0.3、氣化溫度850℃及0~50%煅燒白雲石之取代比例等,產能效率則分別評估產氣組成特性、產物分布特性及合成氣熱值等,此外,污染物(重金屬、硫及氯)排放之分布特性,亦是本研究之重點。
根據催化氣化反應之產能效率結果顯示,未添加煅燒白雲石取代床砂之
試驗結果,H2 及CO 組成比例分別為3.57 vol.%及4.86 vol.%,當以30%煅燒白雲石取代床砂後,分別增加為3.99 vol.%及5.95 vol.%,產氣比例分別提升了10.5%及18.3%。隨著煅燒白雲石之取代比例增加,ASR 催化氣化之產能效率則有增加之現象,其中以添加30%煅燒白雲石取代床砂條件下為最佳,產氣熱值從未添加煅燒白雲石之3.50 MJ/Nm3 增加至3.85 MJ/Nm3,氣體能源產量從4.98 MJ/kg 增加至5.14 MJ/kg,冷燃氣效率從17.40%增加至17.95%。就能源轉換效率之提升結果顯示,煅燒白雲石取代部分石英床砂確實有助於提升ASR 氣化產能之效率。重金屬排放特性之分析結果顯示,銅、鋅、鉻及鉛金屬,透過添加煅燒白雲石於試驗時,有效將原本分布於液相產物及氣相產物之重金屬,轉移至固相產物及煅燒白雲石中,大幅降低合成氣中重金屬含量。以未添加煅燒白雲石取代床砂之試驗結果為例,銅、鋅、鉻及鉛金屬之氣相產物分別為11.71%、9.07%、8.11%及36.28%,當煅燒白雲石取代30%床砂後,前述重金屬氣相產物比例分別降低為0.03%、0.91%、0.58%及1.13%。然而,易揮發性之鎘及汞,則主要分布於合成氣中,煅燒白雲石之添加對其較無明顯影響。
硫及硫化氫排放特性之結果顯示,未添加煅燒白雲石取代床砂之試驗,
氣相及液相產物中硫含量分布比例,分別為57.6%及8.06%,當煅燒白雲石取代30%床砂後,氣相及液相產物比例分別降為16.6%及2.08%。而氣體中硫化氫濃度從未添加煅燒白雲石之570.84 ppm 降低至30%煅燒白雲石取代比例之439.38 ppm,硫化氫去除率約23%。氯排放特性之結果顯示,未添加煅燒白雲石取代床砂之試驗,氣相中氯含量分布比例為60.84%,當煅燒白雲石取代30%床砂後,其氣相中氯含量分布比例降低至20.91%。整體而言,煅燒白雲石取代氣化爐內之石英床砂,有利於降低合成氣中之氯及硫化物之排放。
根據本研究成果初步驗證煅燒白雲石可部分取代石英床砂,並作為氣化反應過程之催化劑,有效促進ASR 催化氣化轉換能源之效率,同時對後端產生之污染物排放及分布特性亦有完整的評估。因此,本研究結果應可提供做為未來相關ASR 催化氣化轉換能源應用技術及污染物排放控制之參考依據。
摘要(英) This research investigates that automobile shredder residue (ASR) converted into energy by fluidized bed gasification system with controlling at ER 0.3, temperature 850℃ and 0~50% ratio calcined dolomite addition as the catalyst and bed material replacement. The producer gas composition, product distribution, energy yield efficiency and trace pollutants (e.g. heavy metal, sulfur, and chlorine) emission characteristics were evaluated.
In the case of without calcined dolomite replacement test, the H2 and CO composition were 3.57 vol.% and 4.86 vol.%, respectively. When the bed material was replaced by 30% calcined dolomite, the H2 and CO composition was slightly increased to 3.99 vol.% and 5.95 vol.%, respectively. The syngas production increasing rate was approximately 10.5% and 18.3%, respectively. The energy yield efficiency of ASR catalyst gasification was increased with an increase in calcined dolomite replacement ratio, especially for 30% replacement ratio. The heating value of producer gas increased from 3.50 MJ/Nm3 to 3.85 MJ/Nm3 with calcined dolomite replacement ratio increasing from 0% to 30%. The gas energy density was also increased from 4.98 MJ/kg to 5.14 MJ/kg as well as the cold gas efficiency (CGE) was increased from 17.40% to 17.95%. Based on the results of energy conversion efficiency, replacing quartz sand with calcined dolomite could enhance the energy yield efficiency in ASR gasification.
The heavy metals emission characteristics results indicated that Cu, Zn, Cr, and Pb were mainly partitioned in the solid phase as calcined dolomite used in quartz sand replacement. That is, when calcined dolomite was used in gasifier, the above metals were significantly decreased in syngas as well as the metals emission was aslo reduced. In the case of without tested calcined dolomite replacement, the Cu, Zn, Cr, and Pb partitioning percentages in the gas phase were 11.71%, 9.07%, 8.11%, and 36.28%, respectively. In the case of 30% calcined dolomite replacement ratio, the above metals partitioning percentages in the gas phase were decreasing to 0.03%, 0.91%, 0.58%, and 1.13%, respectively. However, Cd and Hg were mainly partitioned in the syngas resulting in their high volatility characteristics. Obviously, the calcined dolomite addition was insignificant effect on Cd and Hg partitioning characteristics.
According to the results of the sulfur and hydrogen sulfide emission characteristics, in the case of without tested calcined dolomite replacement ratio, the sulfur partitioned in the gas phase and liquid phase were 57.6% and 8.06%, respectively. When replacing bed material with 30% calcined dolomite, the above sulfur partitioning characteristics were decreased to 16.6% and 2.08%, respectively. The concentration of hydrogen sulfide in syngas was decreased from 570.84 ppm to 439.38 ppm with an increased in calcined dolomite replacement ration from 0% to 30%. The hydrogen sulfide removal rate was approximately 23%. Meanwhile, in the case of without tested calcined dolomite replacement ratio, the chlorine was almost 60.84% partitioned in the gas phase. when replacing bed material with 30% calcined dolomite, the chlorine partitioning percentage in the gas phase was also significantly decreased to 20.91%. Overall, replacing quartz sand with calcined dolomite is beneficial to reduce the chlorine and sulfide emission in the syngas.
In summary, this research has proved the calcined dolomite could replace quartz sand as the bed material. It could enhance energy conversion from ASR via catalytic gasification, but also reduce the derived pollutants (e.g. heavy metal, sulfur, and chlorine) emission during the ASR gasification process. Therefore, the results of this research could provide useful information for the selection of catalytic gasification technologies and control strategies of pollutants emission in the future.
關鍵字(中) ★ 廢車破碎殘餘物
★ 煅燒白雲石
★ 氣化
★ 合成氣
★ 重金屬
★ 硫化氫
關鍵字(英)
論文目次 摘要 i
Abstract iii
目錄 v
圖目錄 ix
表目錄 xiii
第一章 前言 1
第二章文獻回顧 5
2-1 廢機動車輛回收處理程序與現況 5
2-1-1國內廢棄機動車回收處理流程 7
2-1-2國外廢棄機動車回收處理流程 8
2-2廢車破碎殘餘物基本特性與處理技術 12
2-2-1 廢車破碎殘餘物處置與處理 12
2-2-2 ASR產生來源與組成 14
2-2-3 廢棄機車破碎殘餘物特性及有害性 17
2-3 氣化技術原理與應用 21
2-3-1 催化劑對於氣化成效之影響 25
2-4污染物去除 29
2-4-1焦油去除 30
2-4-2硫化物去除 31
2-4-3氯化氫去除 33
2-4-4重金屬去除 34
第三章 研究材料及方法 37
3-1 實驗材料 37
3-1-1 汽車破碎殘餘物(Automobile Shredder Residues, ASR) 37
3-1-2催化劑與床砂 38
3-2實驗方法 39
3-2-1實驗設備 39
3-2-2操作條件 42
3-2-3實驗操作步驟 44
3-3分析項目與方法 45
3-3-1原料基本特性分析 45
3-3-2 催化劑分析方法 50
3-3-3反應動力分析 50
3-3-4氣化產物分析 52
第四章 結果與討論 57
4-1 廢車破碎殘餘物之組成與基本特性分析 57
4-1-1 廢車破碎殘餘物之物性分析 57
4-1-2 廢車破碎殘餘物之基本特性分析結果 59
4-2 廢車破碎殘餘物熱反應動力特性分析 63
4-2-1 熱重分析結果 64
4-2-2 反應活性及活化能分析 68
4-2-3 廢車破碎殘餘物中材料熱反應過程之氣相物種分析 75
4-3 催化劑 81
4-3-1 催化劑特性 81
4-3-2 催化劑之重金屬 84
4-4 廢車破碎殘餘物氣化轉換能源之可行性評估 86
4-4-1 廢車破碎殘餘物催化氣化產氣組成之影響評估 86
4-4-2 廢車破碎殘餘物催化氣化產物之產量及特性分析 98
4-4-3 氣化試驗之再現性 107
4-4-4 質量平衡 108
4-5 廢車破碎殘餘物催化氣化之產能效率評估 118
4-5-1 催化氣化之合成氣特性分析 118
4-5-2 能量分布特性 122
4-6廢車破碎殘餘物氣化轉換污染物之分布 127
4-6-1 產物之重金屬排放濃度變化及分布 127
4-6-2 硫化氫排放濃度變化以及硫分布 149
4-6-3 產物之氯排放濃度變化氯分布 153
4-6-4 污染物排放關係模擬 156
第五章結論與建議 159
5-1 結論 159
5-1-1 廢車破碎殘餘物基本特性分析及反應動力之結果 159
5-1-2 廢車破碎殘餘物催化氣化產能效率之結果 160
5-1-3廢車破碎殘餘物經催化氣化後污染物分布特性之結果 160
5-2建議 161
參考文獻 Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S., 2015. A review on biomass gasification syngas cleanup. Applied Energy 155, 294-307.
Ahmed, I., Gupta, A.K., 2009. Syngas yield during pyrolysis and steam gasification of paper. Applied Energy 86, 1813-1821.
Álvarez-Rodríguez, R., Clemente-Jul, C., 2008. Hot gas desulphurisation with dolomite sorbent in coal gasification. Fuel 87, 3513-3521.
Arena, U., Di Gregorio, F., 2013. Element partitioning in combustion-and gasification-based waste-to-energy units. Waste Management 33, 1142-1150.
Aydın, H., İlkılıç, C., 2012. Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel 102, 605-612.
Basu, P., Kaushal, P., 2009. Modeling of Pyrolysis and Gasification of Biomass in Fluidized Beds: A Review. Chemical Product and Process Modeling 4.
Bernal, S.A., Provis, J.L., Walkley, B., San Nicolas, R., Gehman, J.D., Brice, D.G., Kilcullen, A.R., Duxson, P., van Deventer, J.S.J., 2013. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cement and Concrete Research 53, 127-144.
Buchireddy, P.R., Bricka, R.M., Rodriguez, J., Holmes, W., 2010. Biomass gasification: catalytic removal of tars over zeolites and nickel supported zeolites. Energy & Fuels 24, 2707-2715.
Castro, A., Vilarinho, C., Soares, D., Castro, F., 2013. Kinetic study of thermal de-chlorination of PVC-containing waste, Materials Science Forum. Trans Tech Publ, pp. 611-616.
Chan, F.L., Tanksale, A., 2014. Review of recent developments in Ni-based catalysts for biomass gasification. Renewable and Sustainable Energy Reviews 38, 428-438.
Chiang, K.-Y., Lu, C.-H., Lin, M.-H., Chien, K.-L., 2013. Reducing tar yield in gasification of paper-reject sludge by using a hot-gas cleaning system. Energy 50, 47-53.
Cho, M.-H., Choi, Y.-K., Kim, J.-S., 2015. Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy 87, 586-593.
Cho, M.-H., Mun, T.-Y., Kim, J.-S., 2013. Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar. Energy 53, 299-305.
Choi, Ko, J.-H., Kim, J.-S., 2018. Gasification of dried sewage sludge using an innovative three-stage gasifier: Clean and H2-rich gas production using condensers as the only secondary tar removal apparatus. Fuel 216, 810-817.
Choi, Oh, S.-J., Kim, J.-S., 2017. Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization. Energy 141, 2234-2241.
Coats, A.W., Redfern, J., 1964. Kinetic parameters from thermogravimetric data. Nature 201, 68.
Corella, J., Toledo, J.M., Molina, G., 2008. Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing (RDF) feedstock. Bioresource technology 99, 7539-7544.
Cossu, Fiore, S., Lai, T., Luciano, A., Mancini, G., Ruffino, B., Viotti, P., Zanetti, M.C., 2014. Review of Italian experience on automotive shredder residue characterization and management. Waste Manag 34, 1752-1762.
Cossu, R., Lai, T., 2015. Automotive shredder residue (ASR) management: an overview. Waste management 45, 143-151.
de Andrés, J.M., Narros, A., Rodríguez, M.E., 2011. Behaviour of dolomite, olivine and alumina as primary catalysts in air–steam gasification of sewage sludge. Fuel 90, 521-527.
De Filippis, P., Pochetti, F., Borgianni, C., Paolucci, M., 2003. Automobile shredder residue gasification. Waste management & research 21, 459-466.
Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., 2015. Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration. Energy & Fuels 29, 7516-7525.
Dou, B., Gao, J., Sha, X., Baek, S.W., 2003. Catalytic cracking of tar component from high-temperature fuel gas. Applied Thermal Engineering 23, 2229-2239.
Evangelopoulos, P., Sophonrat, N., Jilvero, H., Yang, W., 2018. Investigation on the low-temperature pyrolysis of automotive shredder residue (ASR) for energy recovery and metal recycling. Waste Manag 76, 507-515.
Gerrard, J., Kandlikar, M., 2007. Is European end-of-life vehicle legislation living up to expectations? Assessing the impact of the ELV Directive on ‘green’innovation and vehicle recovery. Journal of Cleaner Production 15, 17-27.
Haydary, J., Susa, D., Gelinger, V., Čacho, F., 2016. Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor. Journal of Environmental Chemical Engineering 4, 965-972.
Holthaus, P., Kappes, M., Krumm, W., 2017. Upgrading of automobile shredder residue via innovative granulation process ′ReGran′. Waste Manag Res 35, 110-119.
Hu, G., Xu, S., Li, S., Xiao, C., Liu, S., 2006. Steam gasification of apricot stones with olivine and dolomite as downstream catalysts. Fuel Processing Technology 87, 375-382.
Hubbard, C.R., Snyder, R.L., 1988. RIR-measurement and use in quantitative XRD. Powder Diffraction 3, 74-77.
Jody, B., Daniels, E., 1991. Automobile shredder residue: treatment options. Hazardous waste and hazardous materials 8, 219-230.
Jody, B., Daniels, E., Duranceau, C., Pomykala, J., Spangenberger, J., 2011. End-of-life vehicle recycling: state of the art of resource recovery from shredder residue. Argonne National Lab.(ANL), Argonne, IL (United States).
Kanari, N., Pineau, J.-L., Shallari, S., 2003. End-of-life vehicle recycling in the European Union. Jom 55, 15-19.
Khodier, A., Williams, K., Dallison, N., 2018. Challenges around automotive shredder residue production and disposal. Waste Management 73, 566-573.
Kondoh, M., Hamai, M., Yamaguchi, M., Mori, S., 2001. Study of gasification characteristics of automobile shredder residue. JSAE review 22, 234-236.
Kook, J.W., Choi, H.M., Kim, B.H., Ra, H.W., Yoon, S.J., Mun, T.Y., Kim, J.H., Kim, Y.K., Lee, J.G., Seo, M.W., 2016. Gasification and tar removal characteristics of rice husk in a bubbling fluidized bed reactor. Fuel 181, 942-950.
Kurose, K., Okuda, T., Nishijima, W., Okada, M., 2006. Heavy metals removal from automobile shredder residues (ASR). Journal of hazardous materials 137, 1618-1623.
Lin, K.-S., Chowdhury, S., Wang, Z.-P., 2010. Catalytic gasification of automotive shredder residues with hydrogen generation. Journal of Power Sources 195, 6016-6023.
Lopez, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., 2010. Pyrolysis of municipal plastic wastes: Influence of raw material composition. Waste Manag 30, 620-627.
Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., Olazar, M., 2018. Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews 82, 576-596.
Lu, C.-H., Chiang, K.-Y., 2017. Gasification of non-recycled plastic packaging material containing aluminum: Hydrogen energy production and aluminum recovery. International Journal of Hydrogen Energy 42, 27532-27542.
Meng, N., Jiang, D., Liu, Y., Gao, Z., Cao, Y., Zhang, J., Gu, J., Han, Y., 2016. Sulfur transformation in coal during supercritical water gasification. Fuel 186, 394-404.
Morselli, L., Santini, A., Passarini, F., Vassura, I., 2010. Automotive shredder residue (ASR) characterization for a valuable management. Waste Manag 30, 2228-2234.
Ni, F., Chen, M., 2014. Studies on pyrolysis and gasification of automobile shredder residue in China. Waste Management & Research 32, 980-987.
Passarini, F., Ciacci, L., Santini, A., Vassura, I., Morselli, L., 2012. Auto shredder residue LCA: implications of ASR composition evolution. Journal of Cleaner Production 23, 28-36.
Perondi, D., Restelatto, D., Manera, C., Godinho, M., Zattera, A.J., Faria Vilela, A.C., 2019. The role of CaO and its influence on chlorine during the thermochemical conversion of shredder residue. Process Safety and Environmental Protection 122, 58-67.
Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., Santos, J., 2016. Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel 180, 407-416.
Prabhansu, Karmakar, M.K., Chandra, P., Chatterjee, P.K., 2015. A review on the fuel gas cleaning technologies in gasification process. Journal of Environmental Chemical Engineering 3, 689-702.
Quitete, C.P.B., Souza, M.M.V.M., 2017. Application of Brazilian dolomites and mixed oxides as catalysts in tar removal system. Applied Catalysis A: General 536, 1-8.
Roche, E., de Andrés, J.M., Narros, A., Rodríguez, M.E., 2014. Air and air-steam gasification of sewage sludge. The influence of dolomite and throughput in tar production and composition. Fuel 115, 54-61.
Roh, S.A., Kim, W.H., Yun, J.H., Min, T.J., Kwak, Y.H., Seo, Y.C., 2013. Pyrolysis and gasification-melting of automobile shredder residue. Journal of the Air & Waste Management Association 63, 1137-1147.
Sakai, S.-i., Yoshida, H., Hiratsuka, J., Vandecasteele, C., Kohlmeyer, R., Rotter, V.S., Passarini, F., Santini, A., Peeler, M., Li, J., Oh, G.-J., Chi, N.K., Bastian, L., Moore, S., Kajiwara, N., Takigami, H., Itai, T., Takahashi, S., Tanabe, S., Tomoda, K., Hirakawa, T., Hirai, Y., Asari, M., Yano, J., 2013. An international comparative study of end-of-life vehicle (ELV) recycling systems. Journal of Material Cycles and Waste Management 16, 1-20.
Sancho, J.A., Aznar, M.P., Toledo, J.M., 2008. Catalytic air gasification of plastic waste (polypropylene) in fluidized bed. Part I: Use of in-gasifier bed additives. Industrial & Engineering Chemistry Research 47, 1005-1010.
Sansaniwal, S.K., Pal, K., Rosen, M.A., Tyagi, S.K., 2017. Recent advances in the development of biomass gasification technology: A comprehensive review. Renewable and Sustainable Energy Reviews 72, 363-384.
Saxena, R.C., Seal, D., Kumar, S., Goyal, H.B., 2008. Thermo-chemical routes for hydrogen rich gas from biomass: A review. Renewable and Sustainable Energy Reviews 12, 1909-1927.
Sciazko, M., Kubica, K., 2002. The effect of dolomite addition on sulphur, chlorine and hydrocarbons distribution in a fluid-bed mild gasification of coal. Fuel processing technology 77, 95-102.
Singh, Yang, J.K., Chang, Y.Y., 2016. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2. Waste Manag 48, 374-382.
Singh, J., Lee, B.-K., 2015. Reduction of environmental availability and ecological risk of heavy metals in automobile shredder residues. Ecological Engineering 81, 76-81.
Slimane, R.B., Abbasian, J., 2001. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization. Fuel Processing Technology 70, 97-113.
Šyc, M., Pohořelý, M., Jeremiáš, M., Vosecký, M., Kameníková, P., Skoblia, S., Svoboda, K., Punčochář, M., 2011. Behavior of heavy metals in steam fluidized bed gasification of contaminated biomass. Energy & Fuels 25, 2284-2291.
Takaoka, M., Shiota, K., Imai, G., Oshita, K., 2016. Emission of particulate matter 2.5 (PM 2.5) and elements from municipal solid waste incinerators. Journal of Material Cycles and Waste Management 18, 72-80.
Tanigaki, N., Fujinaga, Y., Kajiyama, H., Ishida, Y., 2013. Operating and environmental performances of commercial-scale waste gasification and melting technology. Waste Management & Research 31, 1118-1124.
Taylor, R., Ray, R., Chapman, C., 2013. Advanced thermal treatment of auto shredder residue and refuse derived fuel. Fuel 106, 401-409.
Tingyu, Z., Shouyu, Z., Jiejie, H., Yang, W., 2000. Effect of calcium oxide on pyrolysis of coal in a fluidized bed. Fuel Processing Technology 64, 271-284.
Udomsirichakorn, J., Basu, P., Salam, P.A., Acharya, B., 2013. Effect of CaO on tar reforming to hydrogen-enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier. International Journal of Hydrogen Energy 38, 14495-14504.
Umeda, K., Nakamura, S., Lu, D., Yoshikawa, K., 2019. Biomass gasification employing low-temperature carbonization pretreatment for tar reduction. Biomass and Bioenergy 126, 142-149.
Vaan Graan, M., Bunt, J., 2016. Evaluation of TGA method to predict the ignition temperature and spontaneous combustion propensity of coals of different rank, International conference on advances in science, engineering, technology and natural resources (ICASETNR-16), pp. 24-25.
Valderrama Rios, M.L., González, A.M., Lora, E.E.S., Almazán del Olmo, O.A., 2018. Reduction of tar generated during biomass gasification: A review. Biomass and Bioenergy 108, 345-370.
Vermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., Vandecasteele, C., 2011. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals′ valorisation. J Hazard Mater 190, 8-27.
Vigano, F., Consonni, S., Grosso, M., Rigamonti, L., 2010. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion. Waste Manag 30, 145-153.
Wu, C., Williams, P.T., 2010. A novel Ni–Mg–Al–CaO catalyst with the dual functions of catalysis and CO2 sorption for H2 production from the pyrolysis–gasification of polypropylene. Fuel 89, 1435-1441.
Yang, T., Zhang, Z., Zhu, H., Zhang, W., Gao, Y., Zhang, X., Wu, Q., 2019. Effects of calcined dolomite addition on reaction kinetics of one-part sodium carbonate-activated slag cements. Construction and Building Materials 211, 329-336.
Zhang, Xu, C., Champagne, P., 2010. Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management 51, 969-982.
Zhang, B., Zhang, L., Yang, Z., Yan, Y., Pu, G., Guo, M., 2015. Hydrogen-rich gas production from wet biomass steam gasification with CaO/MgO. International Journal of Hydrogen Energy 40, 8816-8823.
Zhou, X., Liu, W., Zhang, P., Wu, W., 2016. Study on Heavy Metals Conversion Characteristics During Refused Derived Fuel Gasification Process. Procedia Environmental Sciences 31, 514-519.
行政院環境保護署資源回收管理基金管理會,統計資料,回收量98-107年,2019年,取自https://recycle.epa.gov.tw。
李恂,應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性,國立中央大學環境工程研究所,碩士論文,桃園,2018
林勻淅,應用鐵基/鈣基礦物型催化劑提升稻稈氣化產能效率之評估研究,逢甲大學環境工程與科學學系,碩士論文,臺中,2011
林秋良,彭子楦,張智閎,蔡明志,流體化床燃燒過程中結塊去流體化對重金屬分佈之影響,中華民國環境工程學會2009廢棄物處理技術研討會,雲林,2009
國際衍射數據中心(The International Centre for Diffraction Data)(ICDD®), www.icdd.com
鄭釋緣,應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性,國立中央大學環境工程研究所,碩士論文,桃園,2018
伍中流,廢車處理體系之循環型生態策略規劃,國立台灣大學環境工程研究所,碩士論文,台北,2002
戴華山,許祉祥,賀偉雄,張繼文,柯筑閔,廢機動車輛粉碎處理廠粉碎殘餘物物理組成之研究,中華民國環境工程學會2011廢棄物處理技術研討會,臺南,2011
鄭釋緣,江康鈺,應用自製催化劑評估廢車破碎殘餘物氣化重金屬排放特性,中華民國環境工程學會2018廢棄物處理技術研討會,臺南,2018
賀偉雄,廢機動車輛粉碎殘餘物製作固態衍生燃料之實證研究,國立高雄第一科技大學工程科技研究所,博士論文,高雄,2013
李孔概,台灣廢機動車輛粉碎分類處理廠之整體經營績效評估-資料包絡分析法應用,國立臺北大學自然資源與環境管理研究所,碩士論文,臺北,2013
馬佩霙,ASR摻混電纜線脫脂油泥製作ASRDF之研究,國立高雄第一科技 大學環境與安全衛生工程所,碩士論文,高雄,2004
指導教授 江康鈺 審核日期 2019-12-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明