博碩士論文 90322032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:18.216.21.252
姓名 劉俊志(Chun-Chih Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 膨潤土與花崗岩碎石混合材料之熱傳導係數
(Measurement of thermal conductivity of bentonite and crushed granite mixture)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 邊坡上基礎承載力之數值分析
★ 鹼-骨材反應引致裂縫之量測與分析★ 熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今世界上由於放射性能源大量的使用,處置放射性廢料的處置便成為重要的研究課題。目前對於放射性廢料的處置方法中較普遍的方法是利用深層處置場來封存放射性廢料,並於廢料與母岩中加一緩衝材料,緩衝材料的選取依各國家資源不同而有些許之差異,目前各國研究其工程性質發現,膨潤土與砂-膨潤土顆粒混合材料,具有良好的阻絕性及優良的熱學性質。
本文主要針對純膨潤土與依照不同體積比混和之膨潤土加花崗岩碎石,製作不同乾密度,含水量之土樣。設計一模具壓製試體,利用暫態熱針法量測熱傳導係數,由試驗結果可以得知,熱傳導係數會隨著土體之乾密度與含水量之增加而增加;與花崗岩碎石混合後,由於花崗岩可視為一加強材料,故熱傳導係數亦會隨著顆粒之體積比之增加而增加。利用微觀力學成分體積比觀念,發展等含水量法與等密度法計算體積比,應用於微分模式與Self-consistent scheme預測熱傳導係數,與De Vries and Campbell所發展之經驗式(1985),兩者與實驗值比較,可得一良好之預測結果。
摘要(英) For the use of radioactive energy, it is important to develop techniques for the disposal of radioactive wastes in the world. Recently, many countries plan to construct the disposal facility underground deeply. Radioactive waste are sealed in canisters, and buffer materials are filled between canisters and host rock. Buffer materials must have good engineering properties. One of the most important factor is the thermal property. Among the candidates of buffer materials in many other researches, we know that mixture of bentonite and crushed granite has good mechanical properties and thermal characteristics.
The study aims at measuring thermal conductivity of buffer materials with different densities, water contents and granite contents. We improve the heat probe method (ASTM D5334) by designing proper instruments and techniques to measure the thermal conductivity of bentonite and sand-bentonite mixture. In the results we find that the thermal conductivities of buffer material blocks rise with the increasing of density or water content. With mixing of crushed granite, which has higher thermal conductivities, the thermal conductivity increases with granite volumetric fraction. Appling the concept of micromechanics, we develop the equal-density and the equal-water-content method to calculate the volumetric fraction of two individual batches to form one. In this way, Differential scheme and Self-consistent scheme can be applied to predict the thermal conductivities. In comparing with experiential method: the De Vries and Campbell model, both methods can match with experimental data well.
關鍵字(中) ★ 熱傳導係數
★ 緩衝材料
★ 微觀力學熱探針法
關鍵字(英) ★ micromechanics
★ buffer material
★ thermal conductivity
論文目次 圖目錄 VI
表目錄 1
第一章 緒 論.........................................1
1.1研究動機.............................................1
1.2研究目的.............................................1
1.3研究方法.............................................2
1.4論文架構.............................................2
1.5 研究流程圖..........................................3
第二章 文獻回顧 ......................................4
2.1高放射性廢棄物處置場.................................4
2.2大地材料熱學基本理論.................................6
2.2.1熱傳導理論.........................................6
2.2.2大地材料相關熱學物理性質...........................8
2.2.2.1熱擴散係數.......................................8
2.2.2.2比熱.............................................9
2.2.2.3熱阻............................................10
2.3熱傳導係數量測方法..................................11
2.3.1穩態(steady state)量測..........................11
2.3.1.1熱流計法........................................11
2.3.1.2分割棒法........................................12
2.3.2暫態(transient state)量測.......................12
2.3.2.1熱探針法........................................12
2.3.2.2雷射反射法......................................15
2.4複合材料熱傳導係數預測模式..........................15
2.4.1 N相材料之串聯與並聯..............................16
2.4.2 Self-Consistent預測模式..........................17
2.4.3微分模式(Differential scheme)...................17
2.4.4 De Vries and Campbell 模式.......................18
2.5緩衝材料熱傳導係數相關文獻..........................20
第三章 試驗材料與研究方法...........................22
3.1試體來源與準備 .....................................22
3.1.1膨潤土(Bentonite)...............................22
3.1.1.1不同含水量膨潤土控制方法........................23
(A) 增加含水量 .....................................23
(B)減少含水量 .....................................25
3.1.2花崗岩(granite).................................26
3.2試驗儀器 .....................................27
3.2.1資料擷取系統 .....................................27
3.2.2電動碎石機 .....................................27
3.2.3壓力試驗機 .....................................28
3.2.4熱探棒 .....................................29
3.2.5溫度量測元件 .....................................31
3.3美國材料測試協會對暫態熱傳導係數量測法規範 ..........32
3.3.1試驗概述...........................................33
3.3.2試驗儀器...........................................33
3.3.3結果之應用.........................................34
3.4試驗製作與成模方法...................................34
3.4.1試體成模方式 ......................................34
3.4.1.1方柱形緩衝材料試體模具...........................34
3.4.1.2試體壓製試驗步驟.................................36
3.5熱傳導係數量測步驟與方法 .............................40
3.6熱探針法改良試驗結果比較 .............................42
第四章 研究結果與討論.................................44
4.1純膨潤土之熱傳導係數.................................44
4.1.1 熱傳導係數與乾密度之關係..........................44
4.1.1.1最大成模應力與乾密度之關係.......................44
4.1.1.2 熱傳導係數與乾密度之關係........................45
4.1.1.3熱傳導係數與孔隙率之關係.........................46
4.1.2熱傳導係數與含水量之關係...........................48
4.1.2.1最大成模應力與含水量之關係.......................48
4.1.2.2熱傳導係數與含水量之關係.........................48
4.2純膨潤土熱傳導係數預測方法...........................51
4.2.1成分體積比之定義...................................51
4.2.2等含水量法.........................................51
4.2.2.1等含水量法之成份體積比定義 ....................51
4.2.2.2兩相土體之等含水量法模式計算 ....................52
4.2.2.3多相土體之等含水量法模式計算 ....................54
4.2.2.4等含水量法結合N相材料之串聯與並聯預測模式分析....57
4.2.2.5等含水量法結合Self-Consistent Scheme預測熱傳導係數分析...58
4.2.2.6等含水量法結合微分模式預測熱傳導係數之分析...............58
4.2.3等密度法...................................59
4.2.3.1等密度法之成分體積比定義.................59
4.2.3.2多相土體之等密度法模式計算...............60
4.2.3.3等密度法結合N相材料之串聯與並聯預測模式分析..............64
4.2.3.4等密度法結合Self-Consistent Scheme預測熱傳導係數分析.....64
4.2.3.5等密度法結合微分模式預測熱傳導係數之分析.......64
4.2.4 De Vries and Campbell (1985) model........66
4.2.4.1 De Vries and Campbell (1985)模式分析..68
4.3膨潤土混合花崗岩碎石之熱傳導係數.............69
4.3.1最大成模應力與碎石含量之關係...............69
4.3.2花崗岩碎石體積比對熱傳導係數之影響.........70
4.4膨潤土混合花崗岩碎石熱傳導預測模式比較.......74
4.4.1混和體積比之概念...........................74
4.4.2複合土體預測模式之建立.....................74
4.4.3模式評估...................................75
4.4.3.1 N相材料之串聯與並聯 .....................75
4.4.3.2微分模式.................................75
4.4.3.3Self-consistent scheme...................76
4.5純膨潤土之微觀力學模式應用於熱傳導係數預測 ..84
4.5.1計算熱傳導係數.............................84
第五章 結論與建議 ..............................87
5.1結論 .......................................87
5.2建議 .......................................88
參考文獻 .......................................89
參考文獻 1.田永銘,「大地材料之吸水回脹行為」,博士論文,國立成功大學土木工程研究所,台南(1992)。
2.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(I)」,行政院原子能委員會委託研究計畫研究報告,912001INER006,台北(2001)。
3.田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告,912001INER020,台北(2002)。
4.吳博凱,「岩樣熱傳導試驗及深岩層地溫推估模式」,碩士論文,國立交通大學土木工程研究所,新竹(1996)。
5.譚建國、顏崇斌,「以微分模式探求纖維加強複合材料之熱彈係數」,中國工程學刊,第五卷,第三期,第121-131頁(1982)。
6.簡城宗,「複合土體熱傳導性質之初步研究」,碩士論文,國立中央大學土木工程研究所,中壢(1996)。
7.Abu-Hamdeh. N. H., “Effect of tillage treatments on soil thermal
conductivity for some Jordanian clay loam and loam soils,” Soil & Tillage Research, Elsevier, pp. 145-151 (2000).
8.Agilent Technologies, Inc., ”Agilent 344970A data acquisition/switch unit,”
3rd Ed., U.S.A. (1999).
9.ASTM, “ASTM D5334 : Standard Test Method for Determination of Thermal
Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,”
Annual Book of ASTM Standards, Vol.0409, (2000).
10. Borgesson, L., Fredrikson, A., and Johannesson, L., “Heat conductivity of
buffer materials,”SKB Technical Report, Lund, Sweden (1994).
11. Bristow, K. L., “Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes,” Agricultural and forest meteorology, Elsevier, pp. 75-84 (1998).
12. Buntebarth, G., and Schopper, J.R., “Experimental and theoretical investigations on the influence of fluids, solids and interactions between them on thermal properties of porous rocks,” Journal of Phys. Chem. Earth., Elsevier, Vol. 23, No. 9-10, pp.1141-1146 (1998).
13. Campbell, G. S., Soil Physics with BASIC Transport Models for Soil-Plant Systems, Elsevier, New York (1985).
14. Chapman, N.A., McKinley, I.G., and Hill, M.D., The Geological Disposal of Nuclear Waste, John Wiley & Sons, Great Britain, pp. 49-95 (1987).
15. Farouki, O.T., Thermal Properties of Soils, Series on Rock and Soil Mechanics, Vol.11, Trans Tech Publications, Germany (1986).
16. Incropera, F.P.,DeWitt, D.P., Fundamentals of Heat and Mass Transfer, 4th Ed., John Wiley & Sons, Inc., New York, pp. 44-55 (1996).
17. JNC, “H12 Project to Establish Technical Basis for HLW Disposal in Japan Supporting Report 2 : Repository Design and Engineering Technology,”JNC Report, Japan, pp.63-70 (1999).
18. Khan, M.I., “Factors affecting the thermal properties of concrete and applicability of its prediction models,” Building and Environment, Pergamon, pp.607-614(2002).
19. Mclaughlin., R., “A study of the differential scheme for composite materials,” J. Eng Sci., pp.237-244(1977).
20. Ould-Lahoucine, C., Sakashita, H., and Kumada, T., “Measurement of thermal conductivity of buffer materials and evaluation of existing correlations predicting it,” Nuclear Engineering and Design, Elsevier, pp.1-11(2002).
21. Pusch, R., Waste Disposal in Rock, Elsevier, Sweden, pp.430-440 (1994).
Singh, D.N., and Devid, K., “Generalized relationships for estimating soil thermal resistivity,”Experimental Thermal and Fluid Science, Elsevier, pp. 133-143 (2000).
22. Robert, F. Speyer , Thermal Analysis of Materials , Marcel Dekker , New York ,pp.227-249(1993).
23. Singh, D. N.,Kuriyan, S.J., and Manthena, K. C., “A generalized relationship between soil electrical and thermal resistivities,” Experimental Thermal and Fluid Science, Elsevier, pp.175-181(2000).
24. Tien, Y. M., Wu, P. L., Chuang, W. S., Wu, L. H., “Micromechanical Model for Compaction Characteristics of Bentonite-Sand Mixtures,” Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Reims, France (2002).
25. Touloukian, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G., Thermal Conductivity of Nonmetallic Solids, Plenum Publish Corporation, Washington(1970).
指導教授 田永銘(Yuan-Ming Tien) 審核日期 2003-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明