博碩士論文 955203025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:3.144.93.34
姓名 劉育倫(Yu-lun Liu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 以粒子濾波法為基礎之改良式頭部追蹤系統
(An Improved Head Tracking System Using Particle Filter)
相關論文
★ 應用於車內視訊之光線適應性視訊壓縮編碼器設計★ 應用於空間與CGS可調性視訊編碼器之快速模式決策演算法
★ 應用於人臉表情辨識之強健式主動外觀模型搜尋演算法★ 結合Epipolar Geometry為基礎之視角間預測與快速畫面間預測方向決策之多視角視訊編碼
★ 基於改良式可信度傳遞於同質區域之立體視覺匹配演算法★ 以階層式Boosting演算法為基礎之棒球軌跡辨識
★ 多視角視訊編碼之快速參考畫面方向決策★ 以線上統計為基礎應用於CGS可調式編碼器之快速模式決策
★ 適用於唇形辨識之改良式主動形狀模型匹配演算法★ 以運動補償模型為基礎之移動式平台物件追蹤
★ 基於匹配代價之非對稱式立體匹配遮蔽偵測★ 以動量為基礎之快速多視角視訊編碼模式決策
★ 應用於地點影像辨識之快速局部L-SVMs群體分類器★ 以高品質合成視角為導向之快速深度視訊編碼模式決策
★ 以運動補償模型為基礎之移動式相機多物件追蹤★ 基於匹配代價曲線特徵之遮蔽偵測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 物件追蹤為電腦視覺領域重要的議題,可應用於監控系統與人機介面。如何準確估測物件大小並採用合適的物件特徵,以增進追蹤準確度,實為重要的課題。本論文以人類頭部為追蹤目標,以粒子濾波法為基礎,建立適用於非線性與非高斯機率描述的機率狀態轉換與量測的系統。我們將偵測機制整合使追蹤系統,並提出在追蹤的過程中,依據追蹤結果與目標物件的顏色相似度,啟動以不同特徵為基礎的頭部定位系統之方案,重置追蹤系統的目標物件顏色資訊和目前畫面的頭部大小。實驗結果顯示,當人頭部隨意運動,快速移動和對攝影機有距離遠近改變時,本系統仍可達成不錯的追蹤準確性。
摘要(英) Object tracking is an important technique in computer vision, and it can be applied in applications such as visual surveillance and human-robot interaction. How to estimate object scale accurately and choose proper feature to improve tracking accuracy is an important issue. In this paper, our tracking system tracks human heads with particle filter with non-linear and non-Gaussian state transition and measurement. We integrate head detection into tracking system and propose to start head localization with various features based on color similarity of tracking measurement. We reset target color histogram and head scale if needed. Experimental results show that our head tracking system has good tracking accuracy under human regular motion, fast motion and distance variation between the target and the camera.
關鍵字(中) ★ 頭部追蹤系統
★ 粒子濾波法
關鍵字(英) ★ head tracking system
★ particle filter
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究方法 2
1.4 論文架構 3
第二章 物件偵測 4
2.1 物件特徵 4
2.2 物件表示法 6
2.3 物件偵測發展現況 8
2.4 Adaboost人臉偵測演算法 10
2.4.1 Haar-like特徵擷取 11
2.4.2 Adaboost訓練演算法 14
2.4.3 串聯式分類器 15
2.5 總結 16
第三章 物件追蹤 17
3.1 剪影追蹤(Silhouette tracking) 17
3.2 核心追蹤(Kernel tracking) 19
3.2.1平均移動(mean shift)追蹤演算法 20
3.2.2 橢圓追蹤演算法 22
3.3 點追蹤(Point tracking) 23
3.3.1 貝氏濾波法(Bayesian filter) 24
3.3.2 卡爾曼濾波法(Kalman filter) 25
3.3.3 粒子濾波法(Particle filter) 26
3.4 總結 31
第四章 以粒子濾波法為基礎之頭部追蹤系統 32
4.1 應用於物件追蹤以顏色為基礎之適應性粒子濾波法 32
4.1.1 系統架構 32
4.1.2 應用於物件追蹤以顏色為基礎之粒子濾波法 33
4.1.3 目標物件顏色模型更新與物件消失處理 38
4.2 我們提出以粒子濾波法為基礎之改良式頭部追蹤系統 39
4.2.1 系統架構 40
4.2.2 系統狀態與特徵分析 42
4.2.3偵測重置機制與目標物件顏色模型更新 46
4.2.4 結合於追蹤系統之頭部定位系統 48
4.2.5 顏色樣板偵測 49
4.3 總結 50
第五章 實驗結果 51
5.1 實驗環境與測試影片 51
5.2 系統追蹤效能 52
5.2.1追蹤系統的準確度 53
5.2.2 顏色相似度變化 75
5.2.3 系統的計算複雜度 82
第六章 結論與未來展望 91
6.1 結論 91
6.2 未來展望 91
參考文獻 92
參考文獻 [1] D. Koller, J. Weber, and J. Malik,” Robust Multiple Car Tracking with Occlusion Reasoning,” European Conference on Computer Vision, pp. 189-196, 1994.
[2] S. Thrun, W. Burgard, and D. Fox, Probability Robotics, The MIT Press, 2005.
[3] T. Zhao, M. Aggarwal, R. Kumar, and H. Sawhney,” Real-time Wide Area Multi-Camera Stereo Tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 976–983, 2005.
[4] V. Kettnaker and R. Zabih,” Bayesian Multi-Camera Surveillance,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 253-259, 1999.
[5] Y. Chen and Y. Rui,” Real-Time Speaker Tracking Using Particle Filter Sensor Fusion,” IEEE invited paper, Vol. 92, No. 3, 2004.
[6] S. Zhou, R. Chellappa, and B. Moghaddam,” Visual tracking and recognition using appearance-adaptive models in particle filters,” IEEE Transactions on Image Processing, Vol. 13, No. 11, pp. 1491-1506, 2004.
[7] L. Wang, W.M. Hu, and T.N. Tan,” Recent Developments in Human Motion Analysis,” IEEE Transactions on Pattern Recognition, Vol. 36, No. 3, pp. 585-601, 2003.
[8] A. Lehuger, P. Lechat, and P. Perez,” An adaptive mixture color model for robust visual tracking,” IEEE Transactions on Image Processing, pp. 573-576, 2006.
[9] W. H. Liau, C. L. Wu, and L. C. Fu,” Inhabitants Tracking System in a Cluttered Home Environment Via Floor Load Sensors,” IEEE Transactions on Automation Science and Engineering, Vol. 5, No. 1, pp. 10-20, 2008.
[10] D. Cook and S. Das,” Smart Environments: Technology, Protocols and Applications,” Wiley-Interscience, 2004.
[11] B. Fasel, Juergen Luettin,” Automatic facial expression analysis: a survey,” IEEE Transactions on Pattern Recognition, Vol.36, pp. 259-275, 2003
[12] J. Canny,” A computational approach to edge detection,” IEEE Transactions on Pattern Analysis Machine Intelligence, Vol. 8, pp.679-698, 1986.
[13] B. Lucas and T. Kanade,” An iterative image registration technique with an application to stereo vision,” International Joint Conference on Computer Vision, pp.674-679, 1981.
[14] A. Yilmaz, O. Javed, and M. Shah,” Object Tracking: A Survey,” ACM Computing Surveys, Vol. 38, No. 4, pp. 1-45, 2006.
[15] D. Lowe,” Distinctive Image Features from Scale-invariant Keypoint,” International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-100, 2004.
[16] C.Stuffer and W.E.L. Grimson,” Adaptive Background Mixture Models for Real-time Tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 23-25, 1999.
[17] S. C. Zhu and A. Yuille,” Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation,” IEEE Transactions on Pattern Analysis Machine Intelligence, Vol.18, No.9, pp. 884–900, 1996.
[18] P. Viola and M. Jones,“ Rapid Object Detection Using a Boosted Cascade of Simple Features,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 511-518, 2001.
[19] R. Lienhart and J. Maydt,“ An extended set of Haar-like features for rapid object detection,” IEEE Computer Society Conference on Image Processing, Vol. 1, pp. 900-903, 2002.
[20] M. Isard and A. Blake,” Condensation-Conditional Density Propagation for Visual Tracking,” International Journal of Computer Vision, Vol. 29, No. 1, pp. 5-98, 1998.
[21] M. Bertalmio, G. Sapiro, and G. Randall,” Morphing active contours,” IEEE Transactions on Pattern Analysis Machine Intelligence, Vol.22, No.7, pp. 733–737, 2000.
[22] M. Sonka, V. Hlavac, and R. Boyle,” Image Processing, Analysis, and Machine Vision,” Thomson, 2008.
[23] D. Comaniciu, V. Ramesh, and P. Meer,” Real-Time Tracking of Non-Rigid Objects using Mean Shift,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol. 2, pp. 142-149, 2000.
[24]D. Comaniciu, V. Ramesh, and P. Meer,” Kernel-based object tracking,” IEEE Transactions on Pattern Analysis Machine Intelligence, Vol. 25, No.5, pp. 564-577, 2003.
[25]A. Bhattacharyya,” On a Measure of Divergence between Two Statistical Populations Defined by Their Probability Distributions,” Bull. Calcutta Mathematical Society, Vol. 35, pp. 99-109, 1943.
[26]S. Birchfield,” An Elliptical Head Tracker,” IEEE 31st Asilomar Conference on Signals, Systems, and Computers, Vol. 2, pp. 1710-1714, 1997.
[27]R. E. Kalman and R. S. Bucy,” New Results in Linear Filtering and Prediction Theory", Transactions of the ASME – Journal of Basic Engineering, Vol. 83, pp. 95-107, 1961.
[28] H. Y. Cheng and J. N. Hwang,” Multiple-Target Tracking for Crossroad Traffic Utilizing Modified Probabilistic Data Association,” IEEE Computer Society Conference on Acoustics, Speech and Signal Processing, Vol.1, pp. 921-924, 2007.
[29] N. Gordon and D. Salmond,” Bayesian State Estimation for Tracking and Guidance Using the Bootstrap Filter,” Journal of Guidance, Control and Dynamics, Vol.18, pp. 1434-1443, 1995.
[30] G. Kitagawa,” Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models,” Journal of Computational and Graphical Statistics, Vol.5, pp. 1-25, 1996.
[31] A. Lehuger, P. Lechat, and P. Perez,” An Adaptive Mixture Color Model for Robust Visual Tracking” IEEE Computer Society Conference on Image Processing, pp. 573-576, 2006.
[32] K. Nummiaro, E. Koller-Meier, and L. Van Gool,” An Adaptive Color-Based Particle Filter,” International Journal of Image and Vision Computing, Vol. 21, pp. 99-110, 2003.
[33] P. Perez, C. Hue, J. Vermaak, and M. Gangnet,” Color-based Probabilistic Tracking,” European Conference on Computer Vision, p. 661-675, 2002.
[34] D. Murray and A. Basu,” Motion Tracking with an Active Camera,” IEEE Transactions on Pattern Analysis Machine Intelligence, Vol. 16, No.5, pp.449-459, 1994.
[35] D. Chai and K. N. Ngan,” Face segmentation using skin-color map in videophone applicaiton," IEEE Transaction on Circuits System Video Technology, Vol.9, No.4, pp.551-564, 1999.
[36] K.T. Song and W. J. Chen,” Face Recognition and Tracking for Human-Robot Interaction,” IEEE Computer Society Conference on Systems, Man and Cybernetics, Vol. 3, pp. 2877-2882, 2004.
[37] X. Xu and B. Li,” Adaptive Rao–Blackwellized Particle Filter and Its Evaluation for Tracking in Surveillance,” IEEE Transactions on Image Processing, Vol. 16, No. 3, pp. 838-849, 2007.
指導教授 唐之瑋(Chih-Wei Tang) 審核日期 2008-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明