博碩士論文 106621603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.223.107.149
姓名 范家歡(Pham Gia Huan)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 2009-2018年颱風期間香港臭氧高發事件的特徵
(Characteristics of high ozone episodes in Hong Kong during typhoons 2009 - 2018)
相關論文
★ TRMM-LIS衛星閃電資料之分析研究★ 歐洲ESA ATSR衛星火點資料的分析研究
★ 台灣地區閃電與降雨的分類及其氣候特徵★ 1994-2004年台灣近地面臭氧特性分析
★ 臺北地區2002-2005年溫度預報之分析★ 1996-2008年台灣降雨的特性分析
★ 質點擴散模式windmodel向後積分方法的研發★ 颱風路徑之客觀分析方法
★ 台灣夏季近地面環流之Lagrangian 模擬★ Windmodel模式與應用─探討春季台北都會地區空氣污染事件
★ 全球大氣二氧化碳商用貨輪觀測平台之發展★ 高解析度空氣污染物擴散模擬模式的發展
★ 利用GFC二氧化碳分析儀觀測大氣中的二氧化碳★ 太平洋、印度洋、地中海及大西洋海域二氧化碳觀測及分析
★ 第三版風場模式之校驗與敏感度測試★ 深澳火力發電廠關廠前後對大氣環境的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 颱風被認為是對香港空氣質量有重大影響的最主要的氣象事件。在這項研究中,使用表面連續測量數據和臭氧探空儀剖面資料,對10年中的33個發作日(ED)進行了綜合分析。在這項研究中,將以香港為中心超過800公里半徑的颱風過濾掉,然後記錄了每個急診室的颱風位置。時間序列分析顯示10年內的ED通常發生在夏末和秋季。較高的O3事件是造成有利的東北風,中等風速,下沉,強烈的太陽輻射,大氣倒置和地表溫度高的原因,這些因素通常在颱風發生前發生。人們發現這些因素與颱風的位置密切相關:大多數ED發生在颱風位於香港東南部和東部時。向後的軌跡表明,典型ED的空氣質量主要來自中國大陸。此外,西南颱風的特殊情況分析說明了夜間化學過程中Ozone形成的限制因素,並暗示了在強沉降條件下 侵入UTLS地區的可能性。
摘要(英) Typhoons are considered as the most predominant meteorological event that have major influences on air quality in Hong Kong. In this study, using surface continous measurement data together with ozonesonde profiles, 33 episode days (EDs) in 10 years were comprehensive analyzed. In this study, typhoons that centered further than 800km radius around Hong Kong were filtered out then location of typhoons of each ED was noted. Time-series analysis shows that EDs in 10 years often occur in late summer and autumn. Favourable northeasterly winds, moderate wind speed, subsidence, intense solar radiation, atmospheric inversion and high surface temperature which often occur in pre-typhoon days were responsible for those high O3 events. Those factors are found to be strongly associated with the location of typhoons: most of EDs occured when typhoons located in southeastern and eastern of Hong Kong. Backward trajectory shows that air mass origin in typical EDs are mainly from mainland China. Besides, exceptional cases analysis of an southwestern typhoon illustrates the limiting factors from night-time chemistry of O3 formation and suggests the possibility of O3 instrusion from UTLS regions under strong subsidence condition.
關鍵字(中) ★ 颱風
★ 臭氧污染
★ 臭氧探空儀
★ 入侵
★ 夜間化學
關鍵字(英) ★ typhoons
★ ozone pollution
★ ozonesonde
★ instrusion
★ nighttime chemistry
論文目次 ABSTRACT ........................................................................................................................ iv
LIST OF FIGURES .......................................................................................................... viii
LIST OF TABLES ............................................................................................................ xvi
LIST OF NOTATIONS ....................................................................................................xvii
CHAPTER 1 INTRODUCTION .......................................................................................... 1
1. 1 History of Ozone research ...................................................................................... 1
1. 2 Ozone pollution in Hong Kong ............................................................................... 2
1. 3 Focus of this study .................................................................................................. 4
CHAPTER 2 METHODOLOGY ......................................................................................... 5
2. 1 Study Area............................................................................................................... 5
2. 2 Data collection ........................................................................................................ 6
2. 2. 1. Tracks of typhoons ........................................................................................... 6
2. 2. 2. Continous surface data ..................................................................................... 6
2. 2. 3. Ozonesonde vertical profiles ............................................................................ 7
2. 2. 4. Reanalysis data ................................................................................................. 8
CHAPTER 3 RESULTS AND DISCUSSION .................................................................... 9
3. 1 Overview of 10 years meteorological behaviour .................................................... 9
3. 1. 1. Location of typhoons in EDS ........................................................................... 9
3. 1. 2. Meteorological characteristics ....................................................................... 10
3. 2 Overview of 10 years ozone behaviour ................................................................ 12
3. 3 Case Analysis ........................................................................................................ 14
3. 3. 1. Case 1 ............................................................................................................. 14
3. 3. 2. Case 2 ............................................................................................................. 17
3. 3. 3. Correlation between CO and O3 ..................................................................... 20
CHAPTER 4 CONCLUSION ............................................................................................ 22
REFERENCES ................................................................................................................... 24
APPENDIX ........................................................................................................................ 31
參考文獻 [1] J.-L. Baray, G. Ancellet, T. Randriambelo, and S. Baldy, ”Tropical cyclone Marlene and stratosphere-troposphere exchange,” Journal of Geophysical Research: Atmospheres, vol. 104, no. D11, pp. 13953-13970, 1999, doi: 10.1029/1999jd900028.
[2] J. Barré et al., ”Stratosphere-troposphere ozone exchange from high resolution MLS ozone analyses,” Atmospheric Chemistry and Physics, vol. 12, no. 14, pp. 6129-6144, 2012, doi: 10.5194/acp-12-6129-2012.
[3] B. Barret, B. Sauvage, Y. Bennouna, and E. Le Flochmoen, doi: 10.5194/acp-2015-1011.
[4] Z. Cao, L. Sheng, Q. Liu, Y. Diao, W. Wang, and W. Qu, ”Combined Impact of Tropical Cyclones and Surrounding Circulations on Regional Haze-Fog in Northern China,” Aerosol and Air Quality Research, vol. 18, no. 1, pp. 114-126, 2018, doi: 10.4209/aaqr.2016.12.0549.
[5] C. A. Cardelino and W. L. Chameides, ”An observation-based model for analyzing ozone precursor relationships in the urban atmosphere,” J Air Waste Manag Assoc, vol. 45, no. 3, pp. 161-80, Mar 1995, doi: 10.1080/10473289.1995.10467356.
[6] C. Y. Chan and L. Y. Chan, ”Effect of meteorology and air pollutant transport on ozone episodes at a subtropical coastal Asian city, Hong Kong,” Journal of Geophysical Research: Atmospheres, vol. 105, no. D16, pp. 20707-20724, 2000, doi: 10.1029/2000jd900140.
[7] H. R. Cheng, S. M. Saunders, H. Guo, P. K. Louie, and F. Jiang, ”Photochemical trajectory modeling of ozone concentrations in Hong Kong,” Environ Pollut, vol. 180, pp. 101-10, Sep 2013, doi: 10.1016/j.envpol.2013.04.039.
[8] E. C. H. Chow, R. C. Y. Li, and W. Zhou, ”Influence of Tropical Cyclones on Hong Kong Air Quality,” Advances in Atmospheric Sciences, vol. 35, no. 9, pp. 1177-1188, 2018, doi: 10.1007/s00376-018-7225-4.
[9] S. S. Das et al., ”Influence of tropical cyclones on tropospheric ozone: possible implications,” Atmospheric Chemistry and Physics, vol. 16, no. 8, pp. 4837-4847, 2016, doi: 10.5194/acp-16-4837-2016.
[10] L. M. David and P. R. Nair, ”Diurnal and seasonal variability of surface ozone and NOx at a tropical coastal site: Association with mesoscale and synoptic meteorological conditions,” Journal of Geophysical Research, vol. 116, no. D10, 2011, doi: 10.1029/2010jd015076.
[11] A. Ding, T. Wang, and C. Fu, ”Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China,” Journal of Geophysical Research: Atmospheres, vol. 118, no. 16, pp. 9475-9488, 2013, doi: 10.1002/jgrd.50714.
[12] A. Ding, T. Wang, M. Zhao, T. Wang, and Z. Li, ”Simulation of sea-land breezes and a discussion of their implications on the transport of air pollution during a multi-day ozone episode in the Pearl River Delta of China,” Atmospheric Environment, vol. 38, no. 39, pp. 6737-6750, 2004, doi: 10.1016/j.atmosenv.2004.09.017.
[13] C. Dyroff, A. Zahn, E. Christner, R. Forbes, A. M. Tompkins, and P. F. J. van Velthoven, ”Comparison of ECMWF analysis and forecast humidity data with CARIBIC
upper troposphere and lower stratosphere observations,” Quarterly Journal of the Royal Meteorological Society, vol. 141, no. 688, pp. 833-844, 2015, doi: 10.1002/qj.2400.
[14] Y. Feng, A. Wang, D. Wu, and X. Xu, ”The influence of tropical cyclone Melor on PM10 concentrations during an aerosol episode over the Pearl River Delta region of China: Numerical modeling versus observational analysis,” Atmospheric Environment, vol. 41, no. 21, pp. 4349-4365, 2007, doi: 10.1016/j.atmosenv.2007.01.055.
[15] T. Fontes, L. M. Silva, M. P. Silva, N. Barros, and A. C. Carvalho, ”Can artificial neural networks be used to predict the origin of ozone episodes?,” Sci Total Environ, vol. 488-489, pp. 197-207, Aug 1 2014, doi: 10.1016/j.scitotenv.2014.04.077.
[16] D. Ghosh, S. Lal, and U. Sarkar, ”High nocturnal ozone levels at a surface site in Kolkata, India: Trade-off between meteorology and specific nocturnal chemistry,” Urban Climate, vol. 5, pp. 82-103, 2013, doi: 10.1016/j.uclim.2013.07.002.
[17] B. Hu et al., ”Characteristics and Formation Mechanism of Surface Ozone in a Coastal Island of Southeast China: Influence of Sea-land Breezes and Regional Transport,” Aerosol and Air Quality Research, vol. 19, no. 8, pp. 1734-1748, 2019, doi: 10.4209/aaqr.2019.04.0193.
[18] F. Jiang et al., ”An ozone episode in the Pearl River Delta: Field observation and model simulation,” Journal of Geophysical Research, vol. 115, no. D22, 2010, doi: 10.1029/2009jd013583.
[19] F. Jiang, T. Wang, T. Wang, M. Xie, and H. Zhao, ”Numerical modeling of a continuous photochemical pollution episode in Hong Kong using WRF–chem,” Atmospheric Environment, vol. 42, no. 38, pp. 8717-8727, 2008, doi: 10.1016/j.atmosenv.2008.08.034.
[20] Y. C. Jiang et al., ”Why does surface ozone peak before a typhoon landing in southeast China?,” Atmospheric Chemistry and Physics, vol. 15, no. 23, pp. 13331-13338, 2015, doi: 10.5194/acp-15-13331-2015.
[21] G. L. Kok, J. A. Lind, and M. Fang, ”An airborne study of air quality around the Hong Kong Territory,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D15, pp. 19043-19057, 1997, doi: 10.1029/97jd01306.
[22] K. Lam, T. Wang, C. Wu, and Y. Li, ”Study on an ozone episode in hot season in Hong Kong and transboundary air pollution over Pearl River Delta region of China,” Atmospheric Environment, vol. 39, no. 11, pp. 1967-1977, 2005, doi: 10.1016/j.atmosenv.2004.11.023.
[23] Y. C. Lee et al., ”Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China,” Tellus B: Chemical and Physical Meteorology, vol. 66, no. 1, 2014, doi: 10.3402/tellusb.v66.23455.
[24] J. Lelieveld and F. J. Dentener, ”What controls tropospheric ozone?,” Journal of Geophysical Research: Atmospheres, vol. 105, no. D3, pp. 3531-3551, 2000, doi: 10.1029/1999jd901011.
[25] Y. K. Leung, W. L. Chang, and Y. W. Chan, ”Some characteristics of ozone profiles above Hong Kong,” Meteorology and Atmospheric Physics, vol. 87, no. 4, pp. 279-291, 2003, doi: 10.1007/s00703-003-0052-9.
[26] Z. H. Ling, H. Guo, S. H. M. Lam, S. M. Saunders, and T. Wang, ”Atmospheric photochemical reactivity and ozone production at two sites in Hong Kong: Application of a Master Chemical Mechanism-photochemical box model,” Journal of Geophysical
Research: Atmospheres, vol. 119, no. 17, pp. 10567-10582, 2014, doi: 10.1002/2014jd021794.
[27] H. Liu et al., ”Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations,” Journal of Geophysical Research: Atmospheres, vol. 107, no. D21, pp. ACH 3-1-ACH 3-19, 2002, doi: 10.1029/2001jd002005.
[28] P. S. Monks et al., ”Tropospheric ozone and its precursors from the urban to the global scale from air quality to short-lived climate forcer,” Atmospheric Chemistry and Physics, vol. 15, no. 15, pp. 8889-8973, 2015, doi: 10.5194/acp-15-8889-2015.
[29] G. A. Morris et al., ”On the use of the correction factor with Japanese ozonesonde data,” Atmospheric Chemistry and Physics, vol. 13, no. 3, pp. 1243-1260, 2013, doi: 10.5194/acp-13-1243-2013.
[30] S. J. Oltmans, ”Tropospheric ozone over the North Pacific from ozonesonde observations,” Journal of Geophysical Research, vol. 109, no. D15, 2004, doi: 10.1029/2003jd003466.
[31] D. D. Parrish et al., ”Relationships between ozone and carbon monoxide at surface sites in the North Atlantic region,” Journal of Geophysical Research: Atmospheres, vol. 103, no. D11, pp. 13357-13376, 1998, doi: 10.1029/98jd00376.
[32] M. Saunois et al., ”Impact of sampling frequency in the analysis of tropospheric ozone observations,” Atmospheric Chemistry and Physics, vol. 12, no. 15, pp. 6757-6773, 2012, doi: 10.5194/acp-12-6757-2012.
[33] D. G. Streets et al., ”An inventory of gaseous and primary aerosol emissions in Asia in the year 2000,” Journal of Geophysical Research: Atmospheres, vol. 108, no. D21, 2003, doi: 10.1029/2002jd003093.
[34] D. G. Streets et al., ”An inventory of gaseous and primary aerosol emissions in Asia in the year 2000,” Journal of Geophysical Research: Atmospheres, vol. 108, no. D21, 2003, doi: 10.1029/2002jd003093.
[35] R. Talbot, ”Diurnal characteristics of surface level O3 and other important trace gases in New England,” Journal of Geophysical Research, vol. 110, no. D9, 2005, doi: 10.1029/2004jd005449.
[36] H. Tanimoto, R. M. Zbinden, V. Thouret, and P. Nédélec, ”Consistency of tropospheric ozone observations made by different platforms and techniques in the global databases,” Tellus B: Chemical and Physical Meteorology, vol. 67, no. 1, 2015, doi: 10.3402/tellusb.v67.27073.
[37] H. Wang et al., ”Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air,” Atmospheric Chemistry and Physics, vol. 18, no. 6, pp. 4277-4295, 2018, doi: 10.5194/acp-18-4277-2018.
[38] T. Wang, ”Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China,” Atmospheric Environment, vol. 37, no. 25, pp. 3539-3550, 2003, doi: 10.1016/s1352-2310(03)00363-7.
[39] X. Wang et al., ”Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions,” Advances in Atmospheric Sciences, vol. 26, no. 5, pp. 962-972, 2009, doi: 10.1007/s00376-009-8001-2.
[40] R. O. Weber, ”Climatology of ozone transport from the free troposphere into the boundary layer south of the Alps during North Foehn,” Journal of Geophysical Research, vol. 107, no. D3, 2002, doi: 10.1029/2001jd000987.
[41] X. Wei, K.-s. Lam, C. Cao, H. Li, and J. He, ”Dynamics of the Typhoon Haitang Related High Ozone Episode over Hong Kong,” Advances in Meteorology, vol. 2016, pp. 1-12, 2016, doi: 10.1155/2016/6089154.
[42] C. G. Wellemeyer, S. L. Taylor, C. J. Seftor, R. D. McPeters, and P. K. Bhartia, ”A correction for total ozone mapping spectrometer profile shape errors at high latitude,” Journal of Geophysical Research: Atmospheres, vol. 102, no. D7, pp. 9029-9038, 1997, doi: 10.1029/96jd03965.
[43] Z. Xu et al., ”Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric nitrogen dioxide at four differently polluted sites in China,” Atmospheric Environment, vol. 76, pp. 221-226, 2013, doi: 10.1016/j.atmosenv.2012.09.043.
[44] J. X. Yang, A. K. H. Lau, J. C. H. Fung, W. Zhou, and M. Wenig, ”An air pollution episode and its formation mechanism during the tropical cyclone Nuri′s landfall in a coastal city of south China,” Atmospheric Environment, vol. 54, pp. 746-753, 2012, doi: 10.1016/j.atmosenv.2011.12.023.
[45] R. M. Zbinden, V. Thouret, P. Ricaud, F. Carminati, J. P. Cammas, and P. Nédélec, ”Climatology of pure Tropospheric profiles and column contents of ozone and carbon monoxide using MOZAIC in the mid-northern latitudes (24° N to 50° N) from 1994 to 2009,” Atmospheric Chemistry and Physics Discussions, vol. 13, no. 6, pp. 14695-14747, 2013, doi: 10.5194/acpd-13-14695-2013.
[46] S. Zhou et al., ”Photochemical evolution of organic aerosols observed in urban plumes from Hong Kong and the Pearl River Delta of China,” Atmospheric Environment, vol. 88, pp. 219-229, 2014, doi: 10.1016/j.atmosenv.2014.01.032.
指導教授 王國英(Kuo Ying Wang) 審核日期 2020-1-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明