博碩士論文 93533003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:110 、訪客IP:18.221.112.248
姓名 吳宗霖(Tzong-Lin Wu)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 基於區域權重之衛星影像超解析技術
(Region weighted satellite super-resolution technology)
相關論文
★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法★ 實現於RISC架構之H.264視訊編碼複雜度控制
★ 基於卷積遞迴神經網路之構音異常評估技術★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術
★ 具有注意力機制之隱式表示於影像重建 三維人體模型★ 使用對抗式圖形神經網路之物件偵測張榮
★ 基於弱監督式學習可變形模型之三維人臉重建★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構
★ 基於序列至序列模型之 FMCW雷達估計人體姿勢★ 基於多層次注意力機制之單目相機語意場景補全技術
★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控★ 視訊隨選網路上的視訊訊務描述與管理
★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術
★ 即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究★ 線上視訊於IP網路可變延遲環境下之訊務平順化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 高解析影像一直以來都是人們所追求的,由於從高解析影像中可以取得更多的資訊,例如為高解析衛星影像具備較佳的分類區域與分析。一般而言,解析度通常以增加感測器的密度來達成,然而設備與設計成本相當高。尤其衛星高密度感測器必須冒更大的風險。於是我們選擇以多張影像合併方式來發展有效的超解析演算法來達到解析度提升的目標。
先假設所取得的低解析衛星影像間的移動皆在相同平面上,將低解析影像轉換至頻域,進行轉動與移動估測,再將影像對應到高解析格點,再用雙立方內插重建高解析影像。因為衛星影像龐大會造成計算量大幅增加,於是我們用已知衛星參數與區域影像內容進行過濾來降低移動估測與內插像元計算量。結果顯示確實能在維持重建品質前提下降低運算量。
摘要(英) People always desire high resolution image. The reason is higher resolution image can be obtained more information. For example, high resolution satellite images include better classification to identify and analyze. Generally, resolution enhancement is usually completed by increasing density of sensors. However, the additional costs of equipment and design are quite high. Especially, high density satellite sensors must take a big risk. So we choose multiple images composing to develop efficient super-resolution method for achieving resolution enhancement.
We use frequency model to realize super-resolution. Assumed motion of the low resolution satellite images are all on the same plane. Then, estimate rotation and shift in frequency domain. After estimation, we compensate motion and stick on the high resolution grid. Bicubic interpolation method is used to reconstruct high resolution images. Because of the computation cost, we develop a satellite image information parameters filtering to decrease the estimation and interpolation computation. The results show that our method can decrease computation and keep the reconstruction quality.
關鍵字(中) ★ 區域權重
★ 超解析
★ 衛星影像
關鍵字(英) ★ super-resolution
★ region based weighting
★ satellite image
論文目次 中文摘要 ………………………………………………………… i
英文摘要 ………………………………………………………… ii
誌謝 ………………………………………………………… iv
目錄 ………………………………………………………… v
圖目錄 ………………………………………………………… viii
表目錄 ………………………………………………………… viii
第一章 緒論…………………………………………………… 1
1-1 前言…………………………………………………… 1
1-2 研究動機……………………………………………… 2
1-3 論文架構……………………………………………… 3
第二章 超解析簡介與發展現況……………………………… 4
2-1 超解析功能與需求…………………………………… 4
2-1-1 解析度定義…………………………………………… 4
2-1-2 影像縮放……………………………………………… 7
2-1-3 超解析還原…………………………………………… 8
2-2 超解析發展現況……………………………………… 11
2-2-1 靜態影像超解析……………………………………… 11
2-2-2 動態視訊超解析……………………………………… 16
第三章 影像對位簡介與發展現況…………………………… 18
3-1 影像對位功能與需求簡介…………………………… 18
3-1-1 影像來源分類………………………………………… 19
3-1-2 對位步驟……………………………………………… 20
3-1-3 特徵偵測……………………………………………… 23
3-1-2 特徵匹配……………………………………………… 27
3-1-3 轉換模型估測………………………………………… 36
3-1-4 重新取樣與轉換……………………………………… 38
3-2 頻域對位技術之發展現況…………………………… 39
第四章 頻域對位超解析系統………………………………… 42
4-1 頻域影像對位………………………………………… 44
4-1-1 平面移動估測………………………………………… 45
4-1-1-1 轉動估測……………………………………………… 46
4-1-1-2 平移估測……………………………………………… 48
4-1-1-3 混疊…………………………………………………… 48
4-1-2 影像重建……………………………………………… 50
4-1-3 Vandwalle系統總體概觀……………………………… 52
4-2 頻域超解析衛星影像系統…………………………… 53
4-2-1 衛星影像參數過濾…………………………………… 53
4-2-1-1 覆雲量參數…………………………………………… 54
4-2-1-2 區域參數……………………………………………… 56
4-2-1-3 空間頻率參數………………………………………… 57
第五章 實驗結果與討論……………………………………… 60
5-1 對位準確性分析……………………………………… 61
5-2 影像重建品質分析…………………………………… 65
5-3 實際衛星影像測試…………………………………… 66
第六章 結論…………………………………………………… 70
參考文獻……………………………………………… 71
參考文獻 [1] R. Y. Tsai and T. S. Huang, “Multiframe image restoration and registration,” in Advances in Computer Vision and Image Processsing, pp. 317–339. JAI Press Inc., 1984.
[2] S. P. Kim, N. K. Bose, and H. M. Valenzuela, “Recursive reconstruction of high resolution image from noisy undersampled multiframes,” IEEE Trans. on Accoustics, Speech and Signal Processing, Vol. 18, no. 6, pp. 1013–1027, June 1990.
[3] D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using sub-pixel displacements,” in Proc. of IEEE Conf. Computer Vision and Pattern Recognition, Ann Arbor, USA, pp. 742–746, 1988.
[4] Wirawan, Pierre Duhamel, and Henri Maitre, “Multi-channel high resolution blind image restoration,” in Proc. of IEEE ICASSP, Arizona, USA, 1999, pp. 3229–3232.
[5] H. Stark and P. Oskui, “High-resolution image recovery from image plane arrays using convex projections,” J. Optical Society of America, Vol. 6, no. 11, pp. 1715–1726, November 1989.
[6] Didier Calle and Annick Montanvert, “Super-resolution inducing of an image,” in Proc. of IEEE Int. Conf. on Image Processing, Chicago, USA, pp. 742–746, 1998.
[7] R. R. Schultz and R. L. Stevenson, “A Bayesian approach to image expansion for improved definition,” IEEE Trans. on Image Processing, Vol. 3, no. 3, pp. 233–242, May 1994.
[8] P. Cheeseman, Bob Kanefsky, Richard Kraft, John Stutz, and Robin Hanson, “Super-resolved surface reconstruction from multiple images,” Tech. Rep. FIA-94-12, NASA Ames Research Center, Moffet Field, CA, December 1994.
[9] R. W. Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta, Vol. 21, pp. 709–720, 1974.
[10] Deepu Rajan, Some new approaches to generation of superresolution images, Ph.D. thesis, School of Biomedical Engineering, Indian Institute of Technology, Bombay, 2001.
[11] Michal Irani and Shmuel Peleg, “Motion analysis for image enhancement : resolution, occlusion and transparency,” Journal of Visual Communication and Image Representation, Vol. 4, no. 4, pp. 324–335, December 1993.
[12] B. Bascle, A. Blake, and A. Zissermann, “Motion deblurring and super-resolution from an image sequence,” in Proc. of European Conf. on Computer Vision, Cambridge, UK. Springer-Verlag, 1996.
[13] R. R. Schultz and R. L. Stevenson, “Extraction of high-resolution frames from video sequences,” IEEE Trans. on Image Processing, Vol. 5, pp. 996–1011, June 1996.
[14] Andrew J. Patti, M. Ibrahim Sezan, and A. Murat Tekalp, “Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time,” IEEE Trans. on Image Processing, Vol. 6, no. 8, pp. 1064–1076, August 1997.
[15] N. R. Shah and Avideh Zakhor, “Resolution enhancement of color video sequences,” IEEE Trans. on Image Processing, Vol. 8, no. 6, pp. 879–885, June 1999.
[16] L. G. Brown, “A survey of image registration techniques”, ACM Computing Surveys, Vol. 24, pp.326–376, 1992.
[17] A. Goshtasby, Template matching in rotated images, IEEE Trans. Pattern Analysis and Machine Intelligence 7 (1985) 338–344.
[18] H. Li, B. S. Manjunath, S. K. Mitra, A contour-based approach to multisensor image registration, IEEE Trans. Image Processing 4 (1995) 320–334.
[19] D. P. Huttenlocher, G. A. Klanderman, W. J. Rucklidge, Comparing images using the Hausdorff distance, IEEE Trans. Pattern Analysis and Machine Intellinence 15 (1993) 850–863.
[20] G. J. Vanderbrug, A. Rosenfeld, Two stage template matching, IEEE Trans. Computers 26 (1977) 384–393.
[21] R. N. Bracewell, The Fourier Transform and Its Applications, McGraw-Hill, New York, 1965.
[22] E. de Castro, C. Morandi, Registration of translated and rotated images using finite Fourier transform, IEEE Trans. Pattern Analysis and Machine Intelligence 9 (1987) 700–703.
[23] Q. Chen, M. Defrise, F. Deconinck, Symmetric phase-only matched filtering of Fourier-Mellin transform for image registration and recognition, IEEE Trans. Pattern Analysis and Machine Intellingence 16 (1994) 1156–1168.
[24] E. H. Conrow, J. A. Ratkovic, Almost everything one needs to know about image matching systems, Proc. SPIE: Image Processing for Missile Guidance 238 (1980) 426–453.
[25] P. Viola, W. M. Wells, Alignment by maximization of mutual information, Int’l. Journal of Computer Vision 24 (1997) 137–154.
[26] P. Th’evenaz, M. Unser, An efficient mutual information optimizer for multiresolution image registration, Proc. IEEE Int’l. Conf. on Image Processing ICIP’98 (Chicago, Illinois, 1998) 833–837.
[27] J. P. W. Pluim, J. B. A. Maintz, M. A. Viergever, Mutual information in multiresolution contexts, Proc. Int’l Workshop on Biomedical Image Registration WBIR’99 (Bled, Slovenia, 1999) 46–60.
[28] G. P. Penney, J. Weese, J. A. Little, P. Desmedt, D. L. G. Hill, D. J. Hawkes, A comparison of similarity measures for use in 2D–3D medical image registration, IEEE Trans. Medical Imaging 17 (1998) 586–595.
[29] R. K. Sharma, M. Pavel, Multisensor image registration, Proc. Society for Information Display XXVIII (1997) 951–954.
[30] R. Kumar, H. S. Sawhney, J. C. Asmuth, A. Pope, S. Hsu, Registration of video to geo-referenced imagery, Proc. Int’l. Conf. on Pattern Recognition ICPR’98 (Brisbane, Australia, 1998) 1393–1399.
[31] J. P. Djamdji, A. Bajaoui, R. Maniere, Geometrical registration of images: The multiresolution approach, Photogrammetric Engineering and Remote Sensing 53 (1993) 645–653.
[32] J. le Moigne, Parallel registratin of multi-sensor remotely sensed imagery using wavelet coefficients, Proc. SPIE: Wavelet Applications 2242 (Orlando, Florida, 1994) 432–443.
[33] H. S. Stone, J. le Moigne, M. McGuire, The translation sensitivity of wavelet-based registration, IEEE Trans. Pattern Analysis and Machine Intelligence 21 (1999) 1074–1081.
[34] O. Thepaut, K. Kpalma, J. Ronsin, Automatic registration of ERS and SPOT multisensor images in a data fusion context, Forest Ecology and Management 128 (2000) 93–100.
[35] R. B. Huseby, O. M. Halck, R. Solberg, A model-based approach for geometrical correction of optical satellite images, Proc. Int’l. Geosci. Rem. Sensing Symp. IGARSS’99 (Hamburg, Germany, 1999) 330–332.
[36] D. Shin, J. K. Pollard, J. P. Muller, Accurate geometric correction of ATSR images, IEEE Trans. Geoscience and Remote Sensing 35 (1997) 997–1006.
[37] T. M. Lehman, C. Gornner, K. Spitzer, Survey: Interpolation methods in medical image processing, IEEE Trans. Medical Imaging 18 (1999) 1049–1075.
[38] P. Th’evenaz, T. Blu, M. Unser, Interpolation revisited, IEEE Trans. on Medical Imaging 19 (2000) 739–758.
[39] B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Transactions on Image Processing, Vol. 5, no. 8, pp. 1266–1271, 1996.
[40] B. Marcel, M. Briot, and R. Murrieta, “Calcul de translation et rotation par la transformation de Fourier,” Traitement du Signal, Vol. 14, no. 2, pp. 135–149, 1997.
[41] S. P. Kim and W.-Y. Su, “Subpixel accuracy image registration by spectrum cancellation,” in Proceedings of IEEE International Conference Acoustics, Speech, Signal Processing (ICASSP ’93), Vol. 5, pp. 153–156, Minneapolis, Minn, USA, April 1993.
[42] H. S. Stone, M. T. Orchard, E.-C. Chang, and S. A. Martucci, “A fast direct Fourier-based algorithm for subpixel registration of images,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, no. 10, pp. 2235–2243, 2001.
[43] P. Vandewalle, S. E. S¨usstrunk, and M. Vetterli, “Superresolution images reconstructed from aliased images,” in Proceedings of SPIE/IS&T Visual Communications and Image Processing Conference, T. Ebrahimi and T. Sikora, Eds., Vol. 5150 of Proceedings of SPIE, pp. 1398–1405, Lugano, Switzerland, 2003.
[44] H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Transactions on Image Processing, Vol. 11, no. 3, pp. 188–200, 2002.
[45] L. Lucchese and G. M. Cortelazzo, “A noise-robust frequency domain technique for estimating planar roto-translations,” IEEE Transactions on Signal Processing, Vol. 48, no. 6, pp. 1769–1786, 2000.
[46] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical model-based motion estimation,” in Proceedings of 2nd European Conference on Computer Vision (ECCV
’92), Lecture Notes in Computer Science, pp. 237–252, Santa Margherita Ligure, Italy, May 1992.
[47] M. Irani, B. Rousso, and S. Peleg, “Computing occluding and transparent motions,” International Journal of Computer Vision, Vol. 12, no. 1, pp. 5–16, 1994.
[48] J. Gluckman, “Gradient field distributions for the registration of images,” in Proceedings of IEEE International Conference on Image Processing (ICIP ’03), Vol. 3, pp. 691–694, Barcelona, Spain, September 2003.
[49] A. Zomet, A. Rav-Acha, and S. Peleg, “Robust superresolution,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR ’01), Vol. 1, pp. 645–650, Kauai, Hawaii, USA, December 2001.
[50] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robustmultiframe super-resolution,” IEEE Transactions on Image Processing, Vol. 13, no. 10, pp. 1327–1344, 2004.
[51] M. Elad and A. Feuer, “Restoration of a single super-resolution image from several blurred, noisy, and undersampled measured images,” IEEE Transactions on Image Processing, Vol. 6, no. 12, pp. 1646–1658, 1997.
[52] P. Vandewalle, S. E. Süsstrunk, and M. Vetterli, “A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution,” EURASIP Journal on Applied Signal Processing, pp. 1–14, 2006.
指導教授 張寶基(Pao-Chi Chang) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明