參考文獻 |
參考文獻
[1] I. E. Agency. https://www.iea.org/data-and-statistics (accessed.
[2] 劉育姍, 康瑋帆, 呂昀陞, and 石信德, ”我國菇類產業現況與技術發展策略分析,” 農政與農情, 285:, pp. 72-82, 2016.
[3] L. Safley Jr, P. Westerman, and J. Barker, ”Fresh dairy manure characteristics and barnlot nutrient losses,” Agricultural Wastes, vol. 17, no. 3, pp. 203-215, 1986.
[4] L. Brennan and P. Owende, ”Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products,” Renewable and sustainable energy reviews, vol. 14, no. 2, pp. 557-577, 2010.
[5] P. Adams, Greenhouse Gas Balances of Bioenergy Systems. 2018.
[6] S. Rasi, A. Veijanen, and J. Rintala, ”Trace compounds of biogas from different biogas production plants,” Energy, vol. 32, no. 8, pp. 1375-1380, 2007.
[7] P. Weiland, ”Biogas production: current state and perspectives,” Applied microbiology and biotechnology, vol. 85, no. 4, pp. 849-860, 2010.
[8] T. Amon, E. Hackl, D. Jeremic, B. Amon, and J. Boxberger, ”Biogas production from animal wastes, energy plants and organic wastes,” 9th World Congress on Anaerobic Digestion, pp. 381–386, 2001.
[9] C. Mao, Y. Feng, X. Wang, and G. Ren, ”Review on research achievements of biogas from anaerobic digestion,” Renewable and sustainable energy reviews, vol. 45, pp. 540-555, 2015.
[10] W. Gujer and A. Zehnder ”Conversion processes in anaerobic digestion,” Water Sci Technol, no. 15, pp. 127-167, 1983.
[11] L. Appels, J. Baeyens, J. Degreve, and R. Dewil, ”Principles and potential of the anaerobic digestion of waste-activated sludge,” Progress in energy and combustion science, vol. 34, no. 6, pp. 755-781, 2008.
[12] S. Dahiya, S. Lakshminarayanan, and S. V. Mohan, ”Steering acidogenesis towards selective propionic acid production using co-factors and evaluating environmental sustainability,” Chemical Engineering Journal, vol. 379, p. 122135, 2020.
[13] Y. Li et al., ”Two-phase anaerobic digestion of lignocellulosic hydrolysate: Focusing on the acidification with different inoculum to substrate ratios and inoculum sources,” Science of The Total Environment, vol. 699, p. 134226, 2020.
[14] Z. Bagi et al., ”Biotechnological intensification of biogas production,” Applied Microbiology and Biotechnology, vol. 76, no. 2, pp. 473-482, 2007.
[15] Q. Wang, M. Kuninobu, H. I. Ogawa, and Y. Kato, ”Degradation of volatile fatty acids in highly efficient anaerobic digestion,” Biomass and Bioenergy, vol. 16, no. 6, pp. 407-416, 1999.
[16] M. De La Rubia, F. Raposo, B. Rincón, and R. Borja, ”Evaluation of the hydrolytic–acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake,” Bioresource Technology, vol. 100, no. 18, pp. 4133-4138, 2009.
[17] C. Nathoa, U. Sirisukpoca, and N. Pisutpaisal, ”Production of hydrogen and methane from banana peel by two phase anaerobic fermentation,” Energy Procedia, vol. 50, pp. 702-710, 2014.
[18] E. Kwietniewska and J. Tys, ”Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation,” Renewable and Sustainable Energy Reviews, vol. 34, pp. 491-500, 2014.
[19] M. Westerholm, S. Roos, and A. Schnürer, ”Syntrophaceticus schinkii gen. nov., sp. nov., an anaerobic, syntrophic acetate-oxidizing bacterium isolated from a mesophilic anaerobic filter,” FEMS microbiology letters, vol. 309, no. 1, pp. 100-104, 2010.
[20] E. J. Bowen, J. Dolfing, R. J. Davenport, F. L. Read, and T. P. Curtis, ”Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater,” Water Science and Technology, vol. 69, no. 5, pp. 1004-1013, 2013.
[21] J. A. Ogejo, Z. Wen, J. Ignosh, E. S. Bendfeldt, and E. Collins, ”Biomethane technology,” 2009.
[22] A. J. Ward, P. J. Hobbs, P. J. Holliman, and D. L. Jones, ”Optimisation of the anaerobic digestion of agricultural resources,” Bioresource technology, vol. 99, no. 17, pp. 7928-7940, 2008.
[23] X. Dai, X. Li, D. Zhang, Y. Chen, and L. Dai, ”Simultaneous enhancement of methane production and methane content in biogas from waste activated sludge and perennial ryegrass anaerobic co-digestion: The effects of pH and C/N ratio,” Bioresource technology, vol. 216, pp. 323-330, 2016.
[24] T. Zhang et al., ”Biogas production by co-digestion of goat manure with three crop residues,” PloS one, vol. 8, no. 6, p. e66845, 2013.
[25] A. Punal, M. Trevisan, A. Rozzi, and J. Lema, ”Influence of C: N ratio on the start-up of up-flow anaerobic filter reactors,” Water research, vol. 34, no. 9, pp. 2614-2619, 2000.
[26] H.-W. Yen and D. E. Brune, ”Anaerobic co-digestion of algal sludge and waste paper to produce methane,” Bioresource technology, vol. 98, no. 1, pp. 130-134, 2007.
[27] A. Khalid, M. Arshad, M. Anjum, T. Mahmood, and L. Dawson, ”The anaerobic digestion of solid organic waste,” Waste management, vol. 31, no. 8, pp. 1737-1744, 2011.
[28] D. Deublein and A. Steinhauser, Biogas from waste and renewable resources: an introduction. John Wiley & Sons, 2011.
[29] D. J. Batstone et al., ”The IWA anaerobic digestion model no 1 (ADM1),” Water Science and technology, vol. 45, no. 10, pp. 65-73, 2002.
[30] P. Kaparaju and J. Rintala, ”Anaerobic co-digestion of potato tuber and its industrial by-products with pig manure,” Resources, Conservation and Recycling, vol. 43, no. 2, pp. 175-188, 2005.
[31] J. Gelegenis, D. Georgakakis, I. Angelidaki, and V. Mavris, ”Optimization of biogas production by co-digesting whey with diluted poultry manure,” Renewable Energy, vol. 32, no. 13, pp. 2147-2160, 2007.
[32] A. Lehtomäki, S. Huttunen, and J. Rintala, ”Laboratory investigations on co-digestion of energy crops and crop residues with cow manure for methane production: effect of crop to manure ratio,” Resources, Conservation and Recycling, vol. 51, no. 3, pp. 591-609, 2007.
[33] R. Alvarez and G. Liden, ”Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste,” Renewable energy, vol. 33, no. 4, pp. 726-734, 2008.
[34] X. Wang, X. Lu, F. Li, and G. Yang, ”Effects of temperature and carbon-nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: focusing on ammonia inhibition,” PloS one, vol. 9, no. 5, p. e97265, 2014.
[35] N. Ren, A. Wang, and F. Ma, ”Acid-producing fermentative microbe physiological ecology, 2005,” ed: Science Press, Beijing.
[36] N. Ren, M. Liu, A. Wang, J. Ding, and H. Li, ”Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process,” Huan jing ke xue= Huanjing kexue, vol. 24, no. 4, pp. 89-93, 2003.
[37] O. Yenigün and B. Demirel, ”Ammonia inhibition in anaerobic digestion: a review,” Process Biochemistry, vol. 48, no. 5-6, pp. 901-911, 2013.
[38] 洪進雄, ”台灣菇類產業發展現況及展望,” ed: 台中: 農業試驗所, 2019, pp. 1-20.
[39] X.-S. Shi et al., ”Modeling of the methane production and pH value during the anaerobic co-digestion of dairy manure and spent mushroom substrate,” Chemical Engineering Journal, vol. 244, pp. 258-263, 2014.
[40] G. Avgerinos and D. I. C. Wang, ”Selective solvent delignification for fermentation enhancement,” Biotechnology and bioengineering, vol. 25, no. 1, pp. 67-83, 1983.
[41] M. J. Taherzadeh and K. Karimi, ”Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review,” International journal of molecular sciences, vol. 9, no. 9, pp. 1621-1651, 2008.
[42] J. Weil, P. Westgate, K. Kohlmann, and M. R. Ladisch, ”Cellulose pretreaments of lignocellulosic substrates,” Enzyme and microbial technology, vol. 16, no. 11, pp. 1002-1004, 1994.
[43] J. Sumphanwanich, N. Leepipatpiboon, T. Srinorakutara, and A. Akaracharanya, ”Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation bySaccharomyces cerevisiae,” Annals of microbiology, vol. 58, no. 2, pp. 219-225, 2008.
[44] F. Carvalheiro, L. C. Duarte, and F. M. Gírio, ”Hemicellulose biorefineries: a review on biomass pretreatments,” Journal of Scientific & Industrial Research, pp. 849-864, 2008.
[45] M. Sonmez and R. Kumar, ”Leaching of waste battery paste components. Part 2: Leaching and desulphurisation of PbSO4 by citric acid and sodium citrate solution,” Hydrometallurgy, vol. 95, no. 1-2, pp. 82-86, 2009.
[46] E. Bruni, A. P. Jensen, and I. Angelidaki, ”Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production,” Bioresource technology, vol. 101, no. 22, pp. 8713-8717, 2010.
[47] 鄭幸雄, ”兩段式高溫厭氧生物共消化程序開發應用,” ed: 中工高雄會刊, 2015.
[48] S. Ghanimeh, D. Al-Sanioura, P. Saikaly, and M. El-Fadel, ”Comparison of Single-Stage and Two-Stage Thermophilic Anaerobic Digestion of SS-OFMSW During the Start-Up Phase,” Waste and Biomass Valorization, pp. 1-8, 2019.
[49] L. T. Fuess et al., ”Diversifying the technological strategies for recovering bioenergy from the two-phase anaerobic digestion of sugarcane vinasse: An integrated techno-economic and environmental approach,” Renewable energy, vol. 122, pp. 674-687, 2018.
[50] R. Ganesh, M. Torrijos, P. Sousbie, A. Lugardon, J. P. Steyer, and J. P. Delgenes, ”Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance,” Waste management, vol. 34, no. 5, pp. 875-885, 2014.
[51] D. Liu, D. Liu, R. J. Zeng, and I. Angelidaki, ”Hydrogen and methane production from household solid waste in the two-stage fermentation process,” Water research, vol. 40, no. 11, pp. 2230-2236, 2006.
[52] A. Rabii, S. Aldin, Y. Dahman, and E. Elbeshbishy, ”A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration,” Energies, vol. 12, no. 6, p. 1106, 2019.
[53] G. Cappai et al., ”An experimental study on fermentative H2 production from food waste as affected by pH,” Waste management, vol. 34, no. 8, pp. 1510-1519, 2014.
[54] L. Alibardi and R. Cossu, ”Pre-treatment of tannery sludge for sustainable landfilling,” Waste management, vol. 52, pp. 202-211, 2016. |