博碩士論文 106324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.188.211.58
姓名 郭家禎(Chia-Chen Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來,大多數工業國家已經意識到溫室氣體,特別是大量排放的二氧化碳對環境的重要影響。人們普遍認為溫室氣體逐年升高是地球年平均溫度升高的主要原因。對於這個嚴重的問題,許多國家提倡碳捕集、封存和再利用技術(Carbon Capture,Storage and Utilization,CCSU)以減少二氧化碳的排放。
為了捕獲二氧化碳,變壓吸附法(Pressure Swing Adsorption, PSA)是一種具有能耗低、投資少、操作過程簡單等特點的氣體分離方法。
本研究為燃煤電廠預處理後的煙道氣提供了一種真空變壓吸附程序(Vacuum Pressure Swing Adsorption, VPSA)捕獲二氧化碳的方法,其目的在長時間(100小時)的運轉下,其產物二氧化碳純度達到85%以上。我們選擇沸石13X分子篩作為吸附劑,使用Thermo Cahn D-200 Digital Recording Balance在不同溫度下量測CO2和N2等溫吸附曲線,以描述吸附平衡的行為,並將吸附劑放入吸附塔中以不同進料濃度與流量進行突破實驗,討論進料濃度與流量對於吸附塔與突破時間的影響。
研究中採用三塔九步驟VPSA程序並使用小型吸附床其直徑和高分別為0.16 m和0.6 m從燃煤電廠煙氣中捕獲CO2,基本操作條件為進料壓力3.2 bar、同向減壓的壓力為0.4 bar與真空壓力為0.1 bar。實驗研究結果顯示,在第280個循環時,塔底產物的CO2純度為與回收率分別為91.01%與58.46%,總機械能耗包含洗滌塔的抽水馬達、吸附式壓縮空氣乾燥機、加壓泵浦、同向減壓的真空泵浦及逆向減壓的真空泵浦為7.89 GJ /tonneCO2,其中真空泵浦的能耗只佔了1.39 GJ /tonneCO2。並在長時間(100小時)的運轉操作中每24小時從吸附塔內取出部分的吸附劑,量測其吸附能力隨時間的變化。
然後我們利用純CO2與N2做適當的控制混合出5% CO2 + 95% N2與20% CO2 + 80% N2的進料氣體濃度,在相同的3塔9步驟的操作程序下可分別獲得塔底產物純度為50.28% 與96.42%,我們並針對不同濃度的進料氣體作程序時間的修改,改善其塔底產物二氧化碳的純度或回收率:進料為煙道氣時,其塔底產物二氧化碳純度從92.04%下降至82.26%,回收率從59.01%上升至60.58%,及機械能耗從7.64 GJ /tonne CO2 下降至 7.56 GJ /tonne CO2;進料為5%CO2+95%N2混合氣時,其塔底產物二氧化碳純度從50.28%上升至82.89%,回收率從49.04%下降至40.24%,及機械能耗從5.09 GJ /tonne CO2 上升至5.31 GJ /tonne CO2;進料為 20%CO2+80%N2混合氣時,其塔底產物二氧化碳純度從96.42%下降至96.09%,回收率從48.33%上升至50.31%,及機械能耗從1.54 GJ /tonne CO2 下降至 1.48 GJ /tonne CO2。
摘要(英) In recent years, most industrial countries come to realize the important environmental effect by greenhouse gas, especially massively discharged carbon dioxide. The greenhouse gas was generally recognized the main cause of annual average temperature rise on earth year by year. For this serious issue, many countries promote carbon capture, storage and utilization (CCSU) to lower the carbon dioxide emission.
In order to capture carbon dioxide, pressure swing adsorption (PSA) is one of gas separation methods which features low energy consumption, lower capital investment, and simple operating process.
This study provides a vacuum pressure swing adsorption process for the capture of carbon dioxide for pretreated flue gas from coal-fired power plants. The research purpose is to get the bottom product with a carbon dioxide purity of over 85% for a long time (100 hours) operation. We selected zeolite 13X molecular sieve as the adsorbent, used Thermo Cahn D-200 Digital Recording Balance to measure the isotherm of CO2 and N2 at different temperatures to describe the behavior of adsorption equilibrium. Then we put the adsorbent into the adsorption bed to do the breakthrough experiments with different feed concentration and flow rate, and discussed the effects of feed concentration and flow rate on adsorption bed and breakthrough time.
In this study, a 3-bed-9-step VPSA process was utilized to capture CO2 from the flue gas of the coal-fired power plant with a bench-scale adsorption bed of 0.16 m diameter and 0.6 m length and the basic operating circumstance was set at feed pressure 3.2 bar, cocurrent depressurization pressure 0.4 bar, and vacuum pressure 0.1 bar. The experimental study showed a result of bottom product with 91.01 % purity and 58.46 % recovery of CO2, and the total mechanical energy consumption including water pumping motor of the scrubber, air dryer, air compressor, and two vacuum pumps for cocuurrent and countercurrent depressurization was 7.89 GJ / tonne CO2 for the 280th cycle, and two vacuum pumps only accounted for 1.39 GJ / tonne CO2. We also took out some particles of the adsorbent from the adsorption bed every 24 hours during long time (100 hours) operation and measured the change of its adsorption capacity with time.
Then we used pure CO2 and N2 to make appropriate control to mix 5% CO2 + 95% N2 and 20% CO2 + 80% N2 as feed concentration and the bottom product could be obtained 50.28% and 96.42% under the same 3-bed-9-step operation process. The operation time was modified for different feed concentration to improve the CO2 purity or recovery of the bottom product. When the feed was the flue gas, the purity of the bottom product dropped from 92.04% to 82.26%, the recovery increased from 59.01% to 60.58%, and the mechanical energy consumption decreased from 7.64 to 7.56 GJ /tonne CO2. When feed was 5% CO2 + 95% N2, the purity of the bottom product increased from 50.28% to 82.89%, the recovery decreased from 49.04% to 40.24%, and the mechanical energy consumption increased from 5.09 to 5.31 GJ /tonne CO2. When feed was 20% CO2 + 80% N2, the purity of the bottom product decreased from 96.42% to 96.09% a, the recovery increase from 48.33% to 50.31%, and the mechanical energy consumption decreased from 1.54 to 1.48 GJ /tonne CO2.
關鍵字(中) ★ 真空變壓吸附
★ 捕獲二氧化碳
★ 煙道氣
★ 燃煤電廠
★ 13X 沸石
關鍵字(英) ★ Vacuum pressure swing adsorption
★ Capture carbon dioxide
★ Flue gas
★ Coal-fired power plant
★ Zeolite 13X
論文目次 目錄
摘要 i
Abstract iii
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xiv
第一章、 緒論 1
第二章、 簡介及文獻回顧 5
2-1 吸附之簡介 5
2-1-1 吸附基本原理 5
2-1-2 吸附劑及其選擇性 8
2-1-3 等溫吸附曲線 10
2-1-4 突破曲線與脫附曲線 12
2-1-5 PSA程序之發展與改進 15
2-2文獻回顧 20
第三章、 實驗方法 24
3-1 等溫吸附曲線實驗 24
3-2 真空變壓吸附與突破曲線實驗 28
3-2-1 真空變壓吸附實驗 28
3-2-3 突破曲線實驗 36
3-3 實驗操作步驟 37
3-3-1 等溫吸附曲線實驗 37
3-3-2 真空變壓吸附實驗-混合氣體操作 38
3-3-3 真空變壓吸附實驗-燃煤電廠煙道氣操作 40
3-3-4 突破曲線實驗 42
第四章、 實驗數據與結果討論 44
4-1 等溫吸附曲線實驗 44
4-2 突破曲線實驗 46
4-2-1 進料濃度與流量對於突破曲線實驗的吸附塔溫度影響 48
4-2-2 進料濃度與流量對於突破曲線實驗的影響 53
4-3 真空變壓吸附實驗 57
4-3-1 捕獲燃煤電廠之煙道氣中二氧化碳 57
4-3-2 分離不同濃度進料混合氣中二氧化碳 70
4-4 改變程序時間對真空變壓吸附實驗的影響 72
4-4-1 捕獲燃煤電廠煙道氣中二氧化碳 72
4-4-2 分離不同濃度進料混合氣中二氧化碳 75
4-5 長時間捕獲煙道氣中二氧化碳對吸附劑的影響 82
第五章、 結論 84
參考文獻 87

參考文獻 參考文獻

[1] 台灣電力公司歷年發購電量,台灣電力公司, 2018. https://www.taipower.com.tw/tc/chart_m/a01_電力供需資訊_電源開發規劃_歷年發電量及結構.html.
[2] R.K. Pachauri and L.A. Meyer, Climate Change 2014: Synthesis Report, IPCC, 2015.
[3] Carbon dioxide levels hit record peak in May, NOAA RESEARCH NEWS, 2019,
https://research.noaa.gov/article/ArtMID/587/ArticleID/2461/Carbon-dioxide-levels-hit-record-peak-in-May.
[4] SPECIAL REPORT: GLOBAL WARMING OF 1.5℃, IPCC, 2018, https://www.ipcc.ch/sr15/.
[5] D. Y. C. Leung, G. Caramanna and M. M. Maroro-Valer, An Overview of Current Status of Carbon Dioxide Capture and Storage Technologies, Renewable and Sustainable Energy Reviews, vol. 39, pp. 426-443, 2014.
[6] High efficiency low emission coal, World Coal Association, 2014,
https://www.worldcoal.org/reducing-co2-emissions/high-efficiency-low-emission-coal .
[7] Y. Wang, L. Zhao, A. Otto, M. Robinius and D. Stolten, A Review of Post-combustion CO2 Capture Technologies from Coal-fired Power Plants, 13th International Conference on Greenhouse Gas Control Technologies, 2016.
[8] L. Zheng, Oxy-fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture (1st ed.), Illinoi: Woodhead Publishing, 2011.
[9] P. Luis, Use of Monoethanolamine (MEA) for CO2 Capture in A Global Scenario, Desalination, vol. 380, pp. 93-99, 2016.
[10] 台灣電力公司, 台電環境白皮書, 民國108年.
[11] R. T. Yang, Gas Seperation by Adsorption Process, London: Imperial College Press, 1987.
[12] S. U. Rege and R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[13] C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, US Patent 2944627, 1960.
[14] A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Dordrecht: Kluwe Academic Publishers, 1988.
[15] W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[16] W. J. Thomas and D. Barry, Adsorption Technology and Design, Oxford: Butterworth-Heinemann, 1998.
[17] D. Daniel and M. P. G. De, Process for Separating A Binary Gaseous Mixture by Adsorption, US Patent 3155468, 1964.
[18] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[19] K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[20] J. J. Collins, Air Separation by Adsorption, US Patent 4026680, 1975.
[21] R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, Optimization of One- and Two-Stage Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve,Industrial & Engineering Chemistry Research, vol. 53, pp. 9186-9198, 2014.
[22] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 Capture from Different CO2 Emission Sources by Vacuum Swing Adsorption Technology, Strategies for CO2 Capture from Different CO2 Emission Sources by Vacuum Swing Adsorption Technology, vol. 24, pp. 460-467, 2016.
[23] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18(5-6), pp. 445-459, 2012.
[24] M. Yan, Y. Li, G. Chen, L. Zhang, Y. Mao and C. Ma, A novel flue gas pre-treatment system of post-combustion CO2 capture in coal-fired power plant, Chemical Engineering Research and Design, vol. 128, pp. 331-341, 2017.
[25] R. Haghpanah, R. Nilam, A. Rajendran, S. Farooq and I. A. Karimi, Cycle Synthesis and Optimization of a VSA Process for Postcombustion CO2 Capture, AIChE Journal, vol. 59, pp. 4735–4748, 2013
[26] J. Zhang, P. A. Webley and P. Xiao, Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture from Flue Gas, Energy Conversion and Management, vol. 49, pp. 346-356, 2008.
[27] S. V. Sivakumar and D. P. Rao, Modified Duplex PSA. 1. Sharp Separation and Process Intensification for CO2−N2−13X Zeolite System, Industrial & Engineering Chemistry Research, vol. 50, pp. 3426-3436, 2011..
[28] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, CO2 Capture from Dry Flue Gas by Vacuum Swing Adsorption: A Pilot Plant Study, AIChE Journal, vol. 60, pp. 1830-1842, 2014.
[29] Z. Liu , C. A. Grande , P. Li , J. Yu and A. E. Rodrigues, Multi-bed Vacuum Pressure Swing Adsorption for carbon dioxide capture, Separation and Purification Technology, vol 81(3), pp. 307-317, 2011.
[30] J. H. Park, H. T. Beum, J. N. Kim and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[31] S. H. Cho, J. H. Park, H. T. Beum, S. S. Han and J. N. Kim, A 2-stage PSA Process for The Recovery of CO2 from Flue Gas and Its Power Consumption, Studies in Surface Science and Catalysis, vol. 153, pp. 405-410, 2004.
指導教授 周正堂(Cheng-Tung Chou) 審核日期 2020-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明