博碩士論文 102283004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:3.137.161.222
姓名 邱志強(Chihchiang Chiu)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(A Computational Study of Functional Materials: Ligand Exchange Mechanisms in MOF Synthesis and Charge Transfer in D-A-π-A Organic Sensitizers in DSSCs)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文由「酸催化的結合取代機制應用於金屬有機框架合成中的配位基交換反應」和「染料敏化太陽能電池電荷轉移的計算研究:內部拉電子基對於D-A-π-A有機染料分子物理性質的影響」兩項研究組成

酸催化的結合取代機制應用於金屬有機框架合成中的配位基交換反應
金屬有機框架(metal-organic framework, MOFs)的合成可以透過下列方式來改善:添加調節劑合成(modulated synthesis)、使用前驅物進行合成(synthesis employing precursors)以及合成後交換(post-synthesis exchange, PSE),上述方式都有一個共同而關鍵的反應,也就是配位基交換的反應。然而,迄今為止,配位基交換的機制和控制交換的基本原理仍然難以捉摸。在此我們報告了二種羧酸1,4-苯二酸和2,3,5,6-四氟-1,4-苯二酸分別與前驅物Zr6O4(OH)4(OMc)12 (OMc = methacrylate,是鋯氧團簇Zr6O4(OH)4的配位基) 進行配位基交換過程的能量級距圖(energy landscapes),該能量級距圖是使用密度泛函理論(density function theory, DFT)計算得出的。配位基交換的速率決定步驟遵循質子催化的結合取代(associative-substitution)反應機構,與先前文獻報導的動力學數據一致。我們的計算顯示,質子催化的結合取代反應取決於輸入與輸出這二個配位基的相對鹼性。這個開創性的發現使得許多以前用宏觀方法解釋的MOFs合成,可以合理地在分子層次上得到理論的支持。此研究結果為合成MOFs提供了新的見識,並為合成MOFs從一開始就提供了合理的新線索。


染料敏化太陽能電池電荷轉移的計算研究:內部拉電子基對於D-A-π-A有機染料分子物理性質的影響
D-A-π-A染料不同於傳統的D-π-A骨架,在染料敏化太陽能電池(DSSC)應用中具有多個優點。相對於D-π-A染料,D-A-π-A染料紅移吸收光譜並顯示出特別的光穩定性。但是,內部的拉電子基對電荷轉移(CT)機率的影響尚不清楚。我們採用密度泛函理論(DFT),含時DFT(TD-DFT)和TD-DFT分子動力學(MD)模擬來研究內部拉電子基對D-A-π-A染料應用於DSSC時的光物理性質影響。我們的計算結果顯示,具有內部強拉電子基的D-A-π-A染料,其吸收帶具有雙重CT的顯著特徵;激發的電子密度同時轉移到內部和末端的拉電子基上。特別地,內部拉電子基在光激發時捕獲大量電子密度。在300K時的TD-DFT MD模擬表明,只有少量的激發電子密度在內部和末端拉電子基之間推拉。熱能不夠高,無法將電子密度從內部拉電子基傳遞到末端拉電子基。我們的研究揭示了D-A-π-A染料CT本質,為進一步合理的工程設計提供了理論基礎。
摘要(英) The dissertation is composed of the two studies, “Ligand Exchange in the Synthesis of Metal-Organic Frameworks Occurs Through Acid-Catalyzed Associative-Substitution”, and “A Computational Study of Charge Transfer in DSSCs: Effects of Internal Electron Acceptor in D-A-π-A Organic Dyes on Photo-physical Properties”.

Ligand Exchange in the Synthesis of Metal-Organic Frameworks Occurs Through Acid-Catalyzed Associative-Substitution
The syntheses of metal–organic frameworks (MOFs) can be improved through modulated synthesis, synthesis employing precursors, and post-synthetic exchange (PSE) modifications, all of which share ligand exchange as a common and crucial reaction. To date, however, the mechanism of ligand exchange and the underlying principles governing it have remained elusive. Herein, we report energy landscapes for the ligand exchange processes of 1,4-benzene dicarboxylic acid and 2,3,5,6-tetrafluoro-1,4-benzene dicarboxylic acid with Zr6O4(OH)4(OMc)12 (OMc = methacrylate), as calculated using density functional theory (DFT). The rate-limiting step of ligand exchange follows an associative-substitution mechanism catalyzed by protons, consistent with previous kinetic data. Our calculations suggest that the acid catalysis is dependent on the relative basicities of the incoming and outgoing ligands coordinated in the complex, allowing molecular-level rationalization of many seminal MOF syntheses that had previously been interpreted macroscopically. Our results provide new insights for MOF synthesis and new clues for the rational de novo synthesis of MOFs.

A Computational Study of Charge Transfer in DSSCs: Effects of Internal Electron Acceptor in D-A-π-A Organic Dyes on Photo-physical Properties
D-A-π-A dyes differ from the traditional D-π-A framework having several merits in dye sensitized solar cell (DSSC) applications. In relative to D-π-A dyes, D-A-π-A dyes red-shift absorption spectra and show particular photo-stability. Nevertheless, the effects of internal acceptor on the charge transfer (CT) probability are unclear. We employed density function theory (DFT), time-dependent DFT (TD-DFT), and TD-DFT molecular dynamics (MD) simulations to investigate the effects of internal acceptor on the photo-physical properties of D-A-π-A dyes on DSSCs. Our calculations show the absorption bands of D-A-π-A dyes with strong electron-withdrawing internal acceptor exhibit significant characteristics of dual CT; the excited electron density is transferred to the internal and terminal acceptors simultaneously. Particularly, the internal acceptor traps a significant amount of electron density upon photo-excitation. The TD-DFT MD simulations at 300K show only a small amount of excited electron density is pushing and pulling between the internal acceptor and the terminal acceptor moieties; the thermal energy is not high enough to drive the electron density from the internal acceptor to the terminal acceptor. Our study reveals the nature of CT bands of D-A-π-A dyes providing a theoretical basis for further rational engineering.
關鍵字(中) ★ 金屬有機架構
★ 配位基交換
★ 染料敏化太陽能電池
★ D-A-π-A
關鍵字(英) ★ MOFs
★ Ligand Exchange
★ DSSCs
★ D-A-π-A
論文目次 中文摘要 I
Abstract III
List of Figures VI
List of Tables IX
Chapter 1 Ligand Exchange in the Synthesis of Metal-Organic Frameworks Occurs Through Acid-Catalyzed Associative-Substitution 1
1-1 Introduction 2
1-2 Computational Methods 5
1-3 Results 8
1-3.1 Structure of Zr6O4(OH)4(OMc)12 Cluster 8
1-3.2 Ligand and Cluster Complexation 9
1-3.3 Energy Landscape of STP1 13
1-3.4 Energy Landscape of STP2 22
1-4 Discussion 28
1-5 Conclusion 32
Chapter 2 A Computational Study of Charge Transfer in DSSCs: Effects of Internal Electron Acceptor in D-A-π-A Organic Dyes on Photo-physical Properties 34
2-1 Introduction 35
2-2 Computational Methods 40
2-3 Results and Discussion 42
2-2.1 Studied Molecules 42
2-2.2 Energy Level of Building Blocks 43
2-2.3 Ground-State Molecular Geometries 45
2-2.4 UV-Vis Spectra of Dye in Solution 46
2-2.5 UV-Visible Spectra of Dye Adsorbed on TiO2 54
2-2.6 Excited-State Oxidation Potential and Photo-stability 60
2-2.7 TD-DFT Nonadiabatic Molecular Dynamics Simulations 62
2-4 Conclusion and Summary 66
References 68
參考文獻 1. Zhou, H. C.; Long, J. R.; Yaghi, O. M., Introduction to Metal-Organic Frameworks. Chemical reviews 2012, 112, 673-674.
2. Connolly, B. M., et al., Tuning Porosity in Macroscopic Monolithic Metal-Organic Frameworks for Exceptional Natural Gas Storage. Nature Communications 2019, 10, 2345.
3. Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q., Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal-Organic Frameworks. Chemical reviews 2012, 112, 703-723.
4. Li, J. R.; Sculley, J.; Zhou, H. C., Metal-Organic Frameworks for Separations. Chemical reviews 2012, 112, 869-932.
5. Bavykina, A.; Gascon, J., An Efficient Nanosieve. Nature Materials 2018, 17, 1057-1058.
6. Jonckheere, D.; Steele, J. A.; Claes, B.; Bueken, B.; Claes, L.; Lagrain, B.; Roeffaers, M. B. J.; De Vos, D. E., Adsorption and Separation of Aromatic Amino Acids from Aqueous Solutions Using Metal-Organic Frameworks. ACS Appl Mater Interfaces 2017, 9, 30064-30073.
7. Zhao, M.; Ou, S.; Wu, C. D., Porous Metal-Organic Frameworks for Heterogeneous Biomimetic Catalysis. Acc Chem Res 2014, 47, 1199-207.
8. Rahmani, E.; Rahmani, M., Al-Based Mil-53 Metal Organic Framework (Mof) as the New Catalyst for Friedel–Crafts Alkylation of Benzene. Industrial & Engineering Chemistry Research 2017, 57, 169-178.
9. Li, P., et al., Metal-Organic Frameworks with Photocatalytic Bactericidal Activity for Integrated Air Cleaning. Nature Communications 2019, 10, 2177.
10. Wu, M. X.; Yang, Y. W., Metal-Organic Framework (Mof)-Based Drug/Cargo Delivery and Cancer Therapy. Adv Mater 2017, 29.
11. Horcajada, P.; Serre, C.; Maurin, G.; Ramsahye, N. A.; Balas, F.; Vallet-Regi, M.; Sebban, M.; Taulelle, F.; Ferey, G., Flexible Porous Metal-Organic Frameworks for a Controlled Drug Delivery. Journal of the American Chemical Society 2008, 130, 6774-80.
12. Li, X., et al., Fast and Selective Fluoride Ion Conduction in Sub-1-Nanometer Metal-Organic Framework Channels. Nature Communications 2019, 10, 2490.
13. Ahmed, H.; Rezk, A. R.; Richardson, J. J.; Macreadie, L. K.; Babarao, R.; Mayes, E. L. H.; Lee, L.; Yeo, L. Y., Acoustomicrofluidic Assembly of Oriented and Simultaneously Activated Metal–Organic Frameworks. Nature Communications 2019, 10, 2282.
14. Stock, N.; Biswas, S., Synthesis of Metal-Organic Frameworks (Mofs): Routes to Various Mof Topologies, Morphologies, and Composites. Chemical reviews 2012, 112, 933-969.
15. Liu, W.-G.; Truhlar, D. G., Computational Linker Design for Highly Crystalline Metal–Organic Framework Nu-1000. Chemistry of Materials 2017, 29, 8073-8081.
16. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society 2008, 130, 13850-1.
17. Garibay, S. J.; Cohen, S. M., Isoreticular Synthesis and Modification of Frameworks with the Uio-66 Topology. Chemical communications 2010, 46, 7700-2.
18. Piscopo, C. G.; Polyzoidis, A.; Schwarzer, M.; Loebbecke, S., Stability of Uio-66 under Acidic Treatment: Opportunities and Limitations for Post-Synthetic Modifications. Microporous and Mesoporous Materials 2015, 208, 30-35.
19. Cao, Y.; Zhang, H.; Song, F.; Huang, T.; Ji, J.; Zhong, Q.; Chu, W.; Xu, Q., Uio-66-Nh(2)/Go Composite: Synthesis, Characterization and Co(2) Adsorption Performance. Materials (Basel) 2018, 11, 589-604.
20. Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P., Modulated Synthesis of Zr-Based Metal-Organic Frameworks: From Nano to Single Crystals. Chemistry 2011, 17, 6643-6651.
21. Bai, Y.; Dou, Y.; Xie, L. H.; Rutledge, W.; Li, J. R.; Zhou, H. C., Zr-Based Metal-Organic Frameworks: Design, Synthesis, Structure, and Applications. Chemical Society reviews 2016, 45, 2327-2367.
22. Hu, Z.; Castano, I.; Wang, S.; Wang, Y.; Peng, Y.; Qian, Y.; Chi, C.; Wang, X.; Zhao, D., Modulator Effects on the Water-Based Synthesis of Zr/Hf Metal–Organic Frameworks: Quantitative Relationship Studies between Modulator, Synthetic Condition, and Performance. Crystal Growth & Design 2016, 16, 2295-2301.
23. Cantu, D. C.; McGrail, B. P.; Glezakou, V.-A., Formation Mechanism of the Secondary Building Unit in a Chromium Terephthalate Metal–Organic Framework. Chemistry of Materials 2014, 26, 6401-6409.
24. Hu, Z.; Peng, Y.; Kang, Z.; Qian, Y.; Zhao, D., A Modulated Hydrothermal (Mht) Approach for the Facile Synthesis of Uio-66-Type Mofs. Inorg Chem 2015, 54, 4862-8.
25. Han, Y.; Li, J. R.; Xie, Y.; Guo, G., Substitution Reactions in Metal-Organic Frameworks and Metal-Organic Polyhedra. Chemical Society reviews 2014, 43, 5952-81.
26. Cohen, S. M., Postsynthetic Methods for the Functionalization of Metal-Organic Frameworks. Chemical reviews 2012, 112, 970-1000.
27. Kim, M.; Cahill, J. F.; Su, Y.; Prather, K. A.; Cohen, S. M., Postsynthetic Ligand Exchange as a Route to Functionalization of ‘Inert’ Metal–Organic Frameworks. Chem. Sci. 2012, 3, 126-130.
28. Guillerm, V.; Gross, S.; Serre, C.; Devic, T.; Bauer, M.; Ferey, G., A Zirconium Methacrylate Oxocluster as Precursor for the Low-Temperature Synthesis of Porous Zirconium(Iv) Dicarboxylates. Chemical communications 2010, 46, 767-9.
29. Huang, Y. H.; Lo, W. S.; Kuo, Y. W.; Chen, W. J.; Lin, C. H.; Shieh, F. K., Green and Rapid Synthesis of Zirconium Metal-Organic Frameworks Via Mechanochemistry: Uio-66 Analog Nanocrystals Obtained in One Hundred Seconds. Chemical communications 2017, 53, 5818-5821.
30. Gross, A. F.; Sherman, E.; Mahoney, S. L.; Vajo, J. J., Reversible Ligand Exchange in a Metal-Organic Framework (Mof): Toward Mof-Based Dynamic Combinatorial Chemical Systems. The journal of physical chemistry. A 2013, 117, 3771-6.
31. Taddei, M.; Wakeham, R. J.; Koutsianos, A.; Andreoli, E.; Barron, A. R., Post-Synthetic Ligand Exchange in Zirconium-Based Metal-Organic Frameworks: Beware of the Defects! Angew Chem Int Ed Engl 2018, 57, 11706-11710.
32. Smolders, S.; Struyf, A.; Reinsch, H.; Bueken, B.; Rhauderwiek, T.; Mintrop, L.; Kurz, P.; Stock, N.; De Vos, D. E., A Precursor Method for the Synthesis of New Ce(Iv) Mofs with Reactive Tetracarboxylate Linkers. Chemical communications 2018, 54, 876-879.
33. Kim, M.; Cahill, J. F.; Fei, H.; Prather, K. A.; Cohen, S. M., Postsynthetic Ligand and Cation Exchange in Robust Metal-Organic Frameworks. Journal of the American Chemical Society 2012, 134, 18082-18088.
34. Puchberger, M.; Kogler, F. R.; Jupa, M.; Gross, S.; Fric, H.; Kickelbick, G.; Schubert, U., Can the Clusters Zr6o4(Oh)4(Oocr)12 and [Zr6o4(Oh)4(Oocr)12]2 Be Converted into Each Other? European Journal of Inorganic Chemistry 2006, 2006, 3283-3293.
35. Kogler, F. R.; Jupa, M.; Puchberger, M.; Schubert, U., Control of the Ratio of Functional and Non-Functional Ligands in Clusters of the Type Zr6o4(Oh)4(Carboxylate)12for Their Use as Building Blocks for Inorganic–Organic Hybrid Polymers. J. Mater. Chem. 2004, 14, 3133-3138.
36. Delley, B., From Molecules to Solids with the Dmol3 Approach. The Journal of Chemical Physics 2000, 113, 7756-7764.
37. Inc., A. S. Material Studio, 7; San Diego, 2013.
38. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Phys Rev Lett 1996, 77, 3865-3868.
39. Delley, B., Hardness Conserving Semilocal Pseudopotentials. Physical Review B 2002, 66.
40. Andzelm, J.; Kolmel, C.; Klamt, A., Incorporation of Solvent Effects into Density-Functional Calculations of Molecular-Energies and Geometries. J Chem Phys 1995, 103, 9312-9320.
41. Kickelbick, G.; Schubert, U., Oxozirconium Methacrylate Clusters: Zr6(OH)4O4(OMc)12 and Zr4O2(OMc)12 (OMc = Methacrylate). Chemische Berichte 1997, 130, 473-478.
42. Liu, C.; Li, G.; Hensen, E. J. M.; Pidko, E. A., Relationship between Acidity and Catalytic Reactivity of Faujasite Zeolite: A Periodic Dft Study. Journal of Catalysis 2016, 344, 570-577.
43. E. P. Serjeant, B. D., Ionization Constants of Organic Acids in Aqueous Solution; Pergamon Press: Oxford, 1979.
44. Wegscheider, R., Untersuchungen uber Die Veresterung Unsymmetrischer Zwei- Und Mehrbasischer Sauren. Monatshefte fur Chemie 1902, 23, 357-368.
45. Kuriyama, I.; Nakajima, Y.; Nishida, H.; Konishi, T.; Takeuchi, T.; Sugawara, F.; Yoshida, H.; Mizushina, Y., Inhibitory Effects of Low Molecular Weight Polyphenolics from Inonotus Obliquus on Human DNA Topoisomerase Activity and Cancer Cell Proliferation. Mol Med Rep 2013, 8, 535-542.
46. Mangiatordi, G. F.; Brémond, E.; Adamo, C., Dft and Proton Transfer Reactions: A Benchmark Study on Structure and Kinetics. Journal of Chemical Theory and Computation 2012, 8, 3082-3088.
47. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-Sensitized Solar Cells. Chem. Rev. 2010, 110, 6595-6663.
48. Wöhrle, D.; Meissner, D., Organic Solar Cells. Adv. Mater. 1991, 3, 129-138.
49. Smestad, G. P., Optoelectronics of Solar Cells; Spie Press, 2002; Vol. 115, p 118.
50. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Gratzel, M., Combined Experimental and Dft-Tddft Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835-47.
51. You, J., et al., A Polymer Tandem Solar Cell with 10.6% Power Conversion Efficiency. Nat Commun 2013, 4, 1446.
52. Tseng, C. Y.; Taufany, F.; Nachimuthu, S.; Jiang, J. C.; Liaw, D. J., Design Strategies of Metal Free-Organic Sensitizers for Dye Sensitized Solar Cells: Role of Donor and Acceptor Monomers. Org. Electron. 2014, 15, 1205-1214.
53. Xu, W.; Peng, B.; Chen, J.; Liang, M.; Cai, F., New Triphenylamine-Based Dyes for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 874-880.
54. Liu, B.; Wu, W.; Li, X.; Li, L.; Guo, S.; Wei, X.; Zhu, W.; Liu, Q., Molecular Engineering and Theoretical Investigation of Organic Sensitizers Based on Indoline Dyes for Quasi-Solid State Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 2011, 13, 8985-92.
55. Wu, Y.; Zhu, W. H.; Zakeeruddin, S. M.; Gratzel, M., Insight into D-A-π-A Structured Sensitizers: A Promising Route to Highly Efficient and Stable Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2015, 7, 9307-18.
56. Wang, X., et al., A Benzothiazole-Cyclopentadithiophene Bridged D-A-π-A Sensitizer with Enhanced Light Absorption for High Efficiency Dye-Sensitized Solar Cells. Chem. Commun. 2014, 50, 3965-3968.
57. Gao, Y.; Li, X.; Hu, Y.; Fan, Y.; Yuan, J.; Robertson, N.; Hua, J.; Marder, S. R., Effect of an Auxiliary Acceptor on D-A-π-A Sensitizers for Highly Efficient and Stable Dye-Sensitized Solar Cells. J. Mater. Chem. A 2016, 4, 12865-12877.
58. Abe, M.; Adam, W.; Heidenfelder, T.; Nau, W. M.; Zhang, X., Intramolecular and Intermolecular Reactivity of Localized Singlet Diradicals: the Exceedingly Long-Lived 2,2-Diethoxy-1,3-Diphenylcyclopentane-1,3-Diyl. J. Am. Chem. Soc. 2000, 122, 2019-2026.
59. Adam, W., et al., Transient Spectroscopy of a Derivative of 2,2-Difluoro-1,3-Diphenylcyclopentane-1,3-Diyla Persistent Localized Singlet 1,3-Diradical. J. Am. Chem. Soc. 1998, 120, 593-594.
60. Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M., Dye-Sensitized Solar Cells Employing a Single Film of Mesoporous Tio2 Beads Achieve Power Conversion Efficiencies over 10%. ACS Nano 2010, 4, 4420-5.
61. He, J.; Wu, W.; Hua, J.; Jiang, Y.; Qu, S.; Li, J.; Long, Y.; Tian, H., Bithiazole-Bridged Dyes for Dye-Sensitized Solar Cells with High Open Circuit Voltage Performance. J. Mater. Chem. 2011, 21, 6054.
62. Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z.-s.; Tian, H., Organic D-A-π-A Solar Cell Sensitizers with Improved Stability and Spectral Response. Adv. Funct. Mater. 2011, 21, 756-763.
63. Mao, J.; Guo, F.; Ying, W.; Wu, W.; Li, J.; Hua, J., Benzotriazole-Bridged Sensitizers Containing a Furan Moiety for Dye-Sensitized Solar Cells with High Open-Circuit Voltage Performance. Chem. Asian J. 2012, 7, 982-91.
64. Ci, Z.; Yu, X.; Bao, M.; Wang, C.; Ma, T., Influence of the Benzo[D]Thiazole-Derived π-Bridges on the Optical and Photovoltaic Performance of D-π-A Dyes. Dyes Pigm. 2013, 96, 619-625.
65. Pei, K.; Wu, Y.; Wu, W.; Zhang, Q.; Chen, B.; Tian, H.; Zhu, W., Constructing Organic D-A-π-A Featured Sensitizers with a Quinoxaline Unit for High-Efficiency Solar Cells: The Effect of an Auxiliary Acceptor on the Absorption and the Energy Level Alignment. Chemistry - A European Journal 2012, 18, 8190-8200.
66. Ying, W. J.; Yang, J. B.; Wielopolski, M.; Moehl, T.; Moser, J. E.; Comte, P.; Hua, J. L.; Zakeeruddin, S. M.; Tian, H.; Gratzel, M., New Pyrido[3,4-B] Pyrazine-Based Sensitizers for Efficient and Stable Dye-Sensitized Solar Cells. Chemical Science 2014, 5, 206-214.
67. Wu, Y.; Zhu, W., Organic Sensitizers from D-π-A to D-A-π-A: Effect of the Internal Electron-Withdrawing Units on Molecular Absorption, Energy Levels and Photovoltaic Performances. Chem. Soc. Rev. 2013, 42, 2039-58.
68. Kusama, H.; Orita, H.; Sugihara, H., Tio2 Band Shift by Nitrogen-Containing Heterocycles in Dye-Sensitized Solar Cells: A Periodic Density Functional Theory Study. Langmuir 2008, 24, 4411-9.
69. Li, W.; Wu, Y.; Zhang, Q.; Tian, H.; Zhu, W., D-A-π-A Featured Sensitizers Bearing Phthalimide and Benzotriazole as Auxiliary Acceptor: Effect on Absorption and Charge Recombination Dynamics in Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2012, 4, 1822-30.
70. Frisch, M. J., et al., Gaussian, Inc., Wallingford CT 2009.
71. Becke, A. D., Density‐Functional Thermochemistry. Iii. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648-5652.
72. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B: Condens. Matter 1988, 37, 785-789.
73. Petersson, G. A.; Al‐Laham, M. A., A Complete Basis Set Model Chemistry. Ii. Open‐Shell Systems and the Total Energies of the First‐Row Atoms. J. Chem. Phys. 1991, 94, 6081-6090.
74. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-Pcm Solvation Model. J. Comput. Chem. 2003, 24, 669-681.
75. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange–Correlation Functional Using the Coulomb-Attenuating Method (Cam-B3lyp). Chem. Phys. Lett. 2004, 393, 51-57.
76. Yakhanthip, T.; Jungsuttiwong, S.; Namuangruk, S.; Kungwan, N.; Promarak, V.; Sudyoadsuk, T.; Kochpradist, P., Theoretical Investigation of Novel Carbazole-Fluorene Based D-π-A Conjugated Organic Dyes as Dye-Sensitizer in Dye-Sensitized Solar Cells (Dscs). J. Comput. Chem. 2011, 32, 1568-1576.
77. Zhang, L.; Cole, J. M., Anchoring Groups for Dye-Sensitized Solar Cells. ACS Appl Mater Interfaces 2015, 7, 3427-55.
78. M, B.; G, G.; M, R.; F, P.; J, P.; M, P.; H, L., Newton-X: A Package for Newtonian Dynamics Close to the Crossing Seam. 2011, www.newtonx.org.
79. Barbatti, M.; Ruckenbauer, M.; Plasser, F.; Pittner, J.; Granucci, G.; Persico, M.; Lischka, H., Newton-X: A Surface-Hopping Program for Nonadiabatic Molecular Dynamics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2014, 4, 26-33.
80. Barbatti, M.; Granucci, G.; Persico, M.; Ruckenbauer, M.; Vazdar, M.; Eckert-Maksić, M.; Lischka, H., The on-the-Fly Surface-Hopping Program System Newton-X: Application to Ab Initio Simulation of the Nonadiabatic Photodynamics of Benchmark Systems. Journal of Photochemistry and Photobiology A: Chemistry 2007, 190, 228-240.
81. Crespo-Otero, R.; Barbatti, M., Spectrum Simulation and Decomposition with Nuclear Ensemble: Formal Derivation and Application to Benzene, Furan and 2-Phenylfuran. Theor. Chem. Acc. 2012, 131.
82. Andersen, H. C., Molecular Dynamics Simulations at Constant Pressure and/or Temperature. J. Chem. Phys. 1980, 72, 2384-2393.
83. Tanaka, H.; Nakanishi, K.; Watanabe, N., Constant Temperature Molecular Dynamics Calculation on Lennard‐Jones Fluid and Its Application to Watera). J. Chem. Phys. 1983, 78, 2626-2634.
84. Pittner, J.; Lischka, H.; Barbatti, M., Optimization of Mixed Quantum-Classical Dynamics: Time-Derivative Coupling Terms and Selected Couplings. Chem. Phys. 2009, 356, 147-152.
85. Hammes‐Schiffer, S.; Tully, J. C., Proton Transfer in Solution: Molecular Dynamics with Quantum Transitions. J. Chem. Phys. 1994, 101, 4657-4667.
86. Butcher, J. C., A Modified Multistep Method for the Numerical Integration of Ordinary Differential Equations. Journal of the ACM 1965, 12, 124-135.
87. Sun, L., et al., Molecular Engineering of Organic Sensitizers for Dye-Sensitized Solar Cell Applications. J. Am. Chem. Soc. 2008, 130, 6259-6266.
88. Liu, B.; Zhu, W.; Zhang, Q.; Wu, W.; Xu, M.; Ning, Z.; Xie, Y.; Tian, H., Conveniently Synthesized Isophorone Dyes for High Efficiency Dye-Sensitized Solar Cells: Tuning Photovoltaic Performance by Structural Modification of Donor Group in Donor-π-Acceptor System. Chem. Commun. 2009, 1766-8.
89. Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H., Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J. Org. Chem. 2008, 73, 3791-7.
90. Mishra, A.; Fischer, M. K. R.; Bauerle, P., Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
91. Velusamy, M.; Justin Thomas, K. R.; Lin, J. T.; Hsu, Y. C.; Ho, K. C., Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells. Org. Lett. 2005, 7, 1899-902.
92. Hou, J.; Chen, H. Y.; Zhang, S.; Li, G.; Yang, Y., Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. J. Am. Chem. Soc. 2008, 130, 16144-5.
93. Li, W.; Du, C.; Li, F.; Zhou, Y.; Fahlman, M.; Bo, Z.; Zhang, F., Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis, and Their Application in Bulk Heterojunction Organic Solar Cells. Chem. Mater. 2009, 21, 5327-5334.
94. Beaujuge, P. M.; Pisula, W.; Tsao, H. N.; Ellinger, S.; Mullen, K.; Reynolds, J. R., Tailoring Structure-Property Relationships in Dithienosilole-Benzothiadiazole Donor-Acceptor Copolymers. J. Am. Chem. Soc. 2009, 131, 7514-5.
95. Tang, Z. M.; Lei, T.; Jiang, K. J.; Song, Y. L.; Pei, J., Benzothiadiazole Containing D-π-A Conjugated Compounds for Dye-Sensitized Solar Cells: Synthesis, Properties, and Photovoltaic Performances. Chem. Asian J. 2010, 5, 1911-7.
96. Zhang, Z.; Peng, B.; Liu, B.; Pan, C.; Li, Y.; He, Y.; Zhou, K.; Zou, Y., Copolymers from Benzodithiophene and Benzotriazole: Synthesis and Photovoltaic Applications. Polymer Chemistry 2010, 1, 1441.
97. Chang, Y. J.; Chow, T. J., Dye-Sensitized Solar Cell Utilizing Organic Dyads Containing Triarylene Conjugates. Tetrahedron 2009, 65, 4726-4734.
98. De Angelis, F.; Fantacci, S.; Mosconi, E.; Nazeeruddin, M. K.; Grätzel, M., Absorption Spectra and Excited State Energy Levels of the N719 Dye on Tio2 in Dye-Sensitized Solar Cell Models. J. Phys. Chem. C 2011, 115, 8825-8831.
99. Pastore, M.; Fantacci, S.; De Angelis, F., Modeling Excited States and Alignment of Energy Levels in Dye-Sensitized Solar Cells: Successes, Failures, and Challenges. J. Phys. Chem. C 2013, 117, 3685-3700.
指導教授 蔡惠旭(Hui-Hsu Gavin Tsai) 審核日期 2020-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明