博碩士論文 106229012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.218.184.214
姓名 卓宛嫺(Wan-Hsien Cho)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 模擬雙極行星狀星雲
相關論文
★ 宇宙射線在球形震波的加速★ 重力透鏡效應造成的類星體-星系關聯與星系-星系相關函數
★ 星際物質演化的研究★ 宇宙射線在恆星風的自相似解
★ 分子雲演化的二維模型★ 以2MASS近紅外資料研究太陽附近的疏散星團
★ 以二微米巡天觀測近紅外資料研究本銀河系結構★ 橢圓星系中基礎平面及等效半徑的多波段研究
★ 宇宙射線和磁流動力系統之不穩定性★ 初生星團的生存率
★ 橢圓星系外型與紅移關聯之研究★ 在不同均功參數下星團的擴散及核心的形成
★ 兩微米巡天數星所取得的銀河系資訊★ A numerical simulation survey on the outflow from the Galactic center
★ Galaxy Cluster Dynamics and Modified Newtonian Dynamics★ Strong Gravitational Lensing in Modified Newtonian Dynamics
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 行星狀星雲的形狀分類可以分成:圓形的行星狀星雲、橢圓形的行星狀星雲、雙極形的行星狀星雲、不規則的行星狀星雲。而我們對於雙極形的行星狀星雲特別感興趣。想像中恆星末期吹出的恆星風應該要是球形的,但是觀測上以雙極形的行星狀星雲居多,理論上有兩種可能造成雙極形的行星狀星雲的形成原因,分別是磁場與雙星系統。我們想要了解雙極形的行星狀星雲的形成原因,因此我們利用數值模擬的方法來研究行星狀星雲的演化,我們利用磁流體模擬程式FLASH進行我們的研究。我們認為雙星系統是造成雙極形的原行星狀星雲的主因。我們假設恆星演化到末期會與伴星形成甜甜圈結構在恆星外圍,而恆星外圍的甜甜圈結構會阻止恆星風,使恆星風無法往赤道方向移動,只能往雙極的方向移動,造成雙極的形狀。
我們設計有一個甜甜圈結構在恆星周圍,恆星會穩定發出脈衝,而外界為星際介質,我們想模擬當恆星風撞上甜甜圈結構時,會有如何的交互作用,藉以印證甜甜圈結構會造成行星狀星雲呈現雙極形,證實雙星系統會造成雙極形的行星狀星雲。
從我們模擬的結果上來看,甜甜圈結構可以阻止恆星風的行進,形成雙極形的行星狀星雲,且我們試著改變甜甜圈結構的密度,隨著甜甜圈結構的密度降低,越來越無法阻止恆星風,甜甜圈就會被破壞。因此我們成功驗證甜甜圈結構是造成行星狀星雲形成雙極結構的因素之一。
摘要(英) Planetary nebulae can be classified into round, elliptical, bipolar, and irregular. We are especially interested in bipolar planetary nebula. It is conceivable that the stellar wind from the star should be spherical. However, from observations the morphology of most planetary nebulae is bipolar not spherical. There are two main reasons for planetary nebula to have bipolar structure: one is binary system, and the other is magnetic field. We would like to understand the formation of bipolar planetary nebula, and we use numerical simulation for our study. We choose the magnetohydrodynamic simulation code FLASH as our main tool. In this thesis, we focus on binary system as the major cause of bipolar structure in planetary nebula (in particular in proto-planetary nebula). We assume that at the end of stellar evolution, the interaction of the stellar wind from the star with the companion star would form a torus around the star. The torus impedes outflow in the equatorial direction. Thus subsequent stellar wind prefers polar direction. As a result, bipolar planetary nebula (proto-planetary nebula) is formed.
Our model involves a gas torus surrounding the central star. The star pulsate periodically and stellar wind bursts at each pulsation. The whole system is embedded in a low density uniform interstellar medium. We study the interaction of the stellar wind with the torus using numerical simulations, and examine the proposition that torus in the binary system is the cause of bipolar (proto-)planetary nebula.
From our simulation result, the gas torus is able to impede the stellar wind, and the shape of the (proto-)planetary nebula is bipolar. We also investigate the effect of the density of the gas torus on the result. As expected, when the density of the tours is lower, it becomes more difficult to hinder the stellar wind, and it may be totally disrupted if its density is low enough. With these simulations, we successfully confirm that gas torus can be one of the main reasons for the formation of bipolar morphology of (proto-)planetary nebulae.
關鍵字(中) ★ (原)行星狀星雲
★ 數值模擬
★ 磁流體力學
★ 雙極形
關鍵字(英) ★ (proto-)planetary nebula
★ simulation
★ MHD
★ FLASH
★ bipolar
論文目次 中文摘要 iii
英文摘要 iv
致謝 v
圖片列表 vii
表格列表 vii
一、 序論 1
1-1 行星狀星雲的演化 1
1-2 行星狀星雲的分類 2
1-3 長條狀行星狀星雲與雙星系統 3
二、 模擬程式與行星狀星雲模型 5
2-1 模擬程式:FLASH 5
2-2 行星狀星雲模型 6
2-2-1 甜甜圈模型(Torus) 8
2-2-2 AGB星及質量流失率 10
2-3 邊界條件 10
2-4 單位 11
三、 模擬測試 12
3-1. 恆星 12
3-2. 甜甜圈模型(Torus) 13
3-3. 解析度 14
3-4. 質量流失率(Mass-loss rate) 17
3-5. 模擬區域切半 18
3-6. 星際介質(Interstellar Medium,ISM)密度 20
四、 結果與討論 22
4-1. 環的影響 22
4-2. 比較甜甜圈模型的密度 25
4-3. 和模擬結果與觀測比較 31
五、 結論 34
六、 參考文獻 36
參考文獻 Akashi, M., Sabach, E., Yogev, O., and Soker, N. (2015). Forming equatorial rings around dying stars. Monthly Notices of the Royal Astronomical Society 453, 2115-2125.
Akashi, M., and Soker, N. (2008). Shaping planetary nebulae by light jets. Monthly Notices of the Royal Astronomical Society 391, 1063-1074.
Akashi, M., and Soker, N. (2013). Impulsive ejection of gas in bipolar planetary nebulae. Monthly Notices of the Royal Astronomical Society 436, 1961-1967.
Akashi, M., and Soker, N. (2016). Bipolar rings from jet-inflated bubbles around evolved binary stars. Monthly Notices of the Royal Astronomical Society 462, 206-216.
Akashi, M., and Soker, N. (2017). Shaping planetary nebulae with jets in inclined triple stellar systems. Monthly Notices of the Royal Astronomical Society 469, 3296-3306.
Balick, B. (1987). The evolution of planetary nebulae. I-Structures, ionizations, and morphological sequences. The Astronomical Journal 94, 671-678.
Balick, B., and Frank, A. (2002). Shapes and Shaping of Planetary Nebulae. Annual Review of Astronomy and Astrophysics 40, 439-486.
Chen, Z., Frank, A., Blackman, E. G., Nordhaus, J., and Carroll-Nellenback, J. (2017). Mass transfer and disc formation in AGB binary systems. Monthly Notices of the Royal Astronomical Society 468, 4465-4477.
Chen, Z., Nordhaus, J., Frank, A., Blackman, E. G., and Balick, B. (2016). Three-dimensional hydrodynamic simulations of L 2 Puppis. Monthly Notices of the Royal Astronomical Society 460, 4182-4187.
Curtis, H. D. (1918). The planetary nebulae. Publications of Lick Observatory 13, 55-74.
Ferrière, K. M. (2001). The interstellar environment of our galaxy. Reviews of Modern Physics 73, 1031-1066.
Fryxell, B., Olson, K., Ricker, P., Timmes, F. X., Zingale, M., Lamb, D. Q., MacNeice, P., Rosner, R., Truran, J. W., and Tufo, H. (2000). FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. The Astrophysical Journal Supplement Series 131, 273-334.
Garcia-Segura, G. (1997). Three-Dimensional Magnetohydrodynamical Modeling of Planetary Nebulae: The Formation of Jets, Ansae, and Point-Symmetric Nebulae via Magnetic Collimation. The Astrophysical Journal 489, L189-L192.
Garcia-segura, G., Langer, N., Rozyczka, M., and Franco, J. (1999). Shaping bipolar and elliptical planetary nebula: effects of stellar rotation, photoionzation heating, and magnetic fields.
Hsia, C. H., Ip, W. H., Li, J. Z., and (2006). Evidence for a Binary Origin of the Young Planetary Nebula Hubble 12. The Astronomical Journal 131, 3040-3046.
Hsia, C. H., Kwok, S., Zhang, Y., Koning, N., and Volk, K. (2010). An optical-infrard study of young multipolar planetary nebula NGC 6644. The Astrophysical Journal 725, 173-183.
Huarte-Espinosa, M., Frank, A., Balick, B., Blackman, E. G., De Marco, O., Kastner, J. H., and Sahai, R. (2012). From bipolar to elliptical: simulating the morphological evolution of planetary nebulae. Monthly Notices of the Royal Astronomical Society 424, 2055-2068.
Iben, I., and Renzini, A. (1983). Asymptotic giant branch evolution and beyond. Annual review of Astronomy and Astrophysics 21, 271-342.
Kwok, S. (1982). From red giants to planetary nebulae. The Astrophysical Journal 258, 280-288.
Kwok, S. (1993). Proto-planetary nebulae. Annual review of astronomy and astrophysics 31, 63-92.
Kwok, S. (2007). ”The origin and evolution of planetary nebulae,” Cambridge University Press.
Kwok, S., Chong, S.-N., Hsia, C.-H., Zhang, Y., and Koning, N. (2009). Discovery of a multipolar structure with an equatorial disk in NGC 6072. The Astrophysical Journal 708, 93-100.
Kwok, S., Chong, S.-N., Koning, N., Hua, T., and Yan, C.-H. (2008). The true shapes of the Dumbbell and the Ring. The Astrophysical Journal 689, 219.
Molnár, L., Joyce, M., and Kiss, L. L. (2019b). Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris. The Astrophysical Journal 879, 62.
Soker, N. (2005). Can We Ignore Magnetic Fields in Studies of PN Formation, Shaping and Interaction with the ISM? In ”AIP Conference Proceedings”, pp. 89-94.
Tasker, E. J., Brunino, R., Mitchell, N. L., Michielsen, D., Hopton, S., Pearce, F. R., Bryan, G. L., and Theuns, T. (2008). A test suite for quantitative comparison of hydrodynamic codes in astrophysics. Monthly Notices of the Royal Astronomical Society 390, 1267-1281.
Tsui, K. (2008). Magnetohydrodynamic model of equatorial plasma torus in planetary nebulae. Astronomy & Astrophysics 482, 793-802.
指導教授 高仲明 審核日期 2020-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明