博碩士論文 101683005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:18.220.178.207
姓名 蔡世樵(Shih-Chiao Tsai)  查詢紙本館藏   畢業系所 太空科學與工程研究所
論文名稱 利用微波輻射及多頻率雷達成像技術於降水探測之研究
(Research on precipitation detection by using microwave radiation and multi-frequency range imaging (RIM) technology)
相關論文
★ 利用中壢特高頻雷達研究對流降水系統雨滴粒徑與速度之關係★ 利用中壢特高頻雷達對流星現象進行觀測與應用
★ 台灣北部地區大氣折射率之分析與應用★ 中華衛星一號Ka波段標識訊號大氣衰減之量測研究
★ 利用華衛一號通訊實驗酬載Ka波段標識訊號對閃爍效應之研究★ 利用中立VHF雷達對大氣及降水回波特性之研究
★ 台灣地區Ka波段大氣傳播通道之研究★ 低軌道Ka波段人造衛星標識訊號特性之研究
★ 電離層散塊E層型態二不規則體之研究★ 中華衛星一號Ka波段傳播實驗診斷分析
★ 中華衛星一號低軌道衛星 Ka 波段雨衰減實驗與模型建立★ 特高頻雷達對空中降水粒子大小與回波功 率關係之研究
★ 低軌道衛星Ka波段閃爍現象之研究★ Ka波段雨衰減之分析與研究
★ 電離層E層場列不規則體移行速度之估算研究★ 臺灣地區蒸發導管之特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 歷年來臺灣所經歷的天然災害,許多都和劇烈降水所帶來之豪大雨息息相關,然而現行「定量降雨」預報仍存在諸多不確定之變數及誤差,因此,若能利用遙測技術針對強降水系統進行密集連續地觀測,瞭解其垂直結構與雲物理過程,便能提供氣象數值模式在參數設定上更真實的參考依據,進而改善降水預報準確度。本研究利用中壢特高頻雷達及國防大學理工學院微波輻射儀,於2013年8月20至23日潭美颱風侵臺期間之觀測資料,並應用多頻率雷達成像技術(RIM)進行降水回波訊號分析;此技術是利用多個頻率之回波訊號,經反演後得到高徑向解析度的亮度函數分布,並可透過傅立葉轉換獲得高徑向解析度頻譜。分析結果發現,當降水現象發生時,須採用逐點校正法進行回波訊號之時間延遲及距離權重函數校正,以提升回波於取樣層數間之連續性;而針對校正後之回波利用Capon法進行時間域訊號反演後轉換為頻率域,可獲得比原始回波徑向解析度更高之頻譜資訊。此外,本研究利用條件平均法進行回波功率、都卜勒速度及頻譜寬等頻譜參數比對,結果發現應用RIM技術於頻譜參數分析,確實可解析出更細微之大氣及降水頻譜參數結構,尤其是在層狀降水的情況下效果更佳,且其所獲得之融解層都卜勒速度隨高度之變化亦較合理。而在降水回波與大氣回波分離部分,本研究另提出Contour法及Peak-Finding法,來進行大氣及降水回波中心之自動辨識及頻譜參數分析,並發現兩種方法的結果相當一致,惟在有降水發生的情況下,FFT取樣點數的不同會造成頻譜寬的些微差異(FFT取樣點數越小,頻譜寬越寬)。本研究亦首次利用雙偏極化微波輻射儀及中壢特高頻雷達進行降水聯合觀測,分析結果發現地面降雨率和輻射儀極化差值在對流降水情況下呈現不錯之正相關,且極化差值資料可用來做為判斷當時環境是否為對流降水之型態;此外,分析結果亦發現對流降水伴隨之強上升氣流,可能造成過冷水滴和冰晶碰撞並附著於其之上,導致雷達回波功率及頻譜寬之降低。研究結果顯示,聯合觀測對於瞭解劇烈降水系統形成之雲物理機制,有極大之潛力。
摘要(英) In recent years, many of the natural disasters that Taiwan has experienced have been closely related to the heavy rain brought by severe precipitation. However, there are still many uncertain variables and errors in the ”quantitative rainfall” forecast. Therefore, if telemetry can be used for dense and continuous observation of heavy precipitation systems, to understand its vertical structure and cloud physics process, it can provide a more realistic reference for parameter setting in meteorological numerical model and improve the accuracy of precipitation forecasting. The present study employed the data collected between 20 and 23 August 2013 by Chung-Li VHF radar and CCIT microwave radiometer, when the typhoon Trami passed through Taiwan, and use multi-frequency range imaging (RIM) technology for precipitation echo analysis. RIM processes the echo signals with a group of closely spaced transmitting frequencies through appropriate inversion methods to obtain high-resolution distribution of echo power in the range direction, and can obtain the high-range resolution Doppler spectra using Fourier transform. Point-by-point correction of range delay combined with compensation of range-weighting function effect has been performed during the retrieval of temporal signals to improve the continuity of power spectra at gate boundaries, making the small-scale structures in the power spectra more natural and reasonable. Using the Capon methods, the radar echoes were synthesized to retrieve the temporal signals at a smaller range step than the original range resolution, and such retrieved temporal signals were then processed in the Doppler frequency domain to identify the atmosphere and precipitation echoes. An analysis called conditional averaging was further executed for echo power, Doppler velocity, and spectral width to verify the potential capabilities of the retrieval processing in resolving small-scale precipitation and atmosphere structures. The performance is better especially in the case of stratiform precipitation, and the Doppler velocity of melting layer change with height is more reasonable. This study also proposes the Contour-Based and Peak-Finding method for automatic localization and spectral parameter analysis of atmospheric and precipitation echo centers, and we found the results of the two methods were in good agreement. However, it also shows that different numbers of data points in FFT could produce slightly different spectra widths, especially in rainy condition: the smaller the FFT number was, the broader the spectral width could be. In this study, it is the first time to use the ground-based double-polarized microwave radiometer and the Chung-Li VHF radar for combined precipitation observation, and the rain rate and the polarization difference shows a good positive correlation in the case of convective precipitation. Also, the polarization difference data can be used to judge whether the environment is convective precipitation at that time. In addition, the analysis results also found that the strong updraft associated with convective precipitation may cause supercooled water droplets collide with ice crystals and adhere to it, which could lead to radar echo power and spectrum width reduction. The results show that joint observation has great potential for understanding the cloud-physical mechanism of the formation of severe precipitation systems.
關鍵字(中) ★ 多頻率雷達成像技術
★ 雙偏極化微波輻射儀
★ 中壢特高頻雷達
★ 極化差值
★ 時間延遲及距離權重函數校正
★ 頻譜參數分析
關鍵字(英)
論文目次 目錄      
中文提要 ……………………………………………………………… i
英文提要 ……………………………………………………………… ii
誌謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… iv
圖目錄 ……………………………………………………………… v
表目錄 ……………………………………………………………… x
符號說明 ……………………………………………………………… xi
一、 緒論………………………………………………………… 1
二、 理論基礎…………………………………………………… 7
2-1 微波輻射儀工作原理……………………………………… 7
2-2 多頻率雷達成像技術(RIM)理論………………… 9
2-3 時間延遲及距離權重函數校正…………………… 14
三、 儀器簡介及實驗參數設定……………………………… 21
3-1 雙偏極化微波輻射儀……………………………………… 21
3-2 中壢特高頻(VHF)雷達…………………………………… 23
3-3 雨滴譜儀…………………………………………………… 26
四、 降水訊號分析及校正……………………………………… 29
4-1 降水回波訊號之分離……………………………………… 29
4-2 降水回波訊號之校正……………………………………… 31
4-2-1 時間域降水回波校正……………………………………… 32
4-2-2 頻率域降水回波校正……………………………………… 39
4-2-3 降水回波相位偏移原因探討……………………………48
五、 RIM技術於降水頻譜分析之應用……………………53
5-1 RIM頻譜分析法…………………………………………… 53
5-2 徑向高解析度降水頻譜參數分析…………………55
5-2-1 回波頻譜功率……………………………………………… 55
5-2-2 都卜勒速度………………………………………………… 57
5-2-3 頻譜寬……………………………………………………… 61
5-3 徑向高解析度融解層都卜勒速度分析…… 64
六、 Contour法及Peak-Finding法應用於自動化頻譜分析…69
6-1 Contour法…………………………………………………… 69
6-2 Peak-Finding法………………………………………………71
6-3 分析結果與討論……………………………………………… 72
6-4 都卜勒速度垂直剖面追蹤………………………………78
七、 微波輻射儀與中壢特高頻雷達之聯合觀測………………… 82
7-1 觀測實驗設置……………………………………………… 82
7-2 觀測結果分析與討論……………………………………… 83
7-2-1 2013年8月20日聯合觀測降水個案1…………83
7-2-2 2013年8月20日聯合觀測降水個案2…………87
7-2-3 2013年8月21日聯合觀測降水個案3…………95
八、 結論………………………………………………………101
8-1 研究貢獻…………………………………………………101
8-2 未來展望…………………………………………………103
參考文獻 …………………………………………………………… 105
參考文獻 ﹝1﹞Shiu, C.-J., Liu, S. C., and Chen, J. P., “Diurnally asymmetric trends of temperature, humidity and precipitation in Taiwan”, J. Climate, Vol.22, NO.21, pp. 5635-5649, 2009.
﹝2﹞Liu, S. C., Fu, C., Shiu, C. J., Chen J. P., and Wu, F., “Temperature dependence of global precipitation extremes”, Geophys. Res. Lett., Vol.36, L17702, doi:10.1029/2009GL040218, 2009.
﹝3﹞王光華、劉振榮,「應用微波資料估計台灣附近地區降雨之研究」,航測及遙測學刊,第三卷,第三期,39-66頁,1998。
﹝4﹞Liu G.-R., C.-C. Liu, and T.-H. Kuo, “Rainfall intensity estimation by ground-based dual-frequency microwave radiometers”, J. Appl. Meteor., 40, pp. 1035–1041, 2001.
﹝5﹞Westwater, E. R., “The accuracy of water vapor and cloud liquid determination by dual-frequency ground-based microwave radiometry”, Radio Sci., 13, pp. 677–685, 1978.
﹝6﹞Hogg, D. C., F. O. Guiraud, J. B. Snider, M. T. Decker and E. R. Westwater, “A Steerable Dual-Channel Microwave Radiometer for Measurement of Water Vapor and Liquid in the Troposphere”, J. Appl. Meteor., 22, pp. 789-806, 1983.
﹝7﹞Marzano, F. S., E. Fionda, P. Ciotti, and A. Martellucci, “Ground-based multi-frequency microwave radiometry for rainfall remote sensing”, Trans. Geosci. Rem. Sens., 40, pp. 742–759, 2002.
﹝8﹞Czekala, H., S. Crewell, A. Hornbostel, A. Schroth, C. Simmer, and A. Thiele, “Interpretation of polarization features in ground based microwave observations as caused by horizontally aligned oblate rain drops”, J. Appl. Meteor., 40, pp. 1918–1932, 2001.
﹝9﹞Battaglia, A., P. Saavedra, C. Simmer, and T. Rose, “Rain observations by multifrequency dual-polarized radiometer”, IEEE, Geosci. Remote Sens. Lett., 6, pp. 354-358, 2009.
﹝10﹞Battaglia, A., P. Saavedra, T. Rose, and C. Simmer, “Characterization of Precipitating Clouds by Ground-Based Measurements with the Triple-Frequency Polarized Microwave Radiometer ADMIRARI”, J. Appl. Meteor., 49, pp. 394-414, 2010.
﹝11﹞葉南慶、汪建良、蔡明達、陳萬金、胡仁基,「利用地基雙偏極化微波輻射儀估算降雨」,大氣科學,第三十九期,第三號,第215-242頁, 2011。
﹝12﹞Woodman, R. F. and Guillen, A., “Radar observations of winds and turbulence in the stratosphere and mesosphere”, J. Atmos. Sci., 31, pp. 493–505, 1974.
﹝13﹞Fukao, S., Wakasugi, K., Sato, T., Tsuda, T., Kimura, I., Takeuchi, N., Matsuo, M., and Kato, S., “Simultaneous observation of precipitation atmosphere by VHF and C/Ku band Radars”, Radio Sci., 20, pp. 622–630, 1985.
﹝14﹞Larsen, M. F. and Röttger, J., “Observation of thunderstorm reflectivities and Doppler velocities measured at VHF and UHF”, J. Atmos. Ocean. Tech., 4, pp. 151–159, 1987.
﹝15﹞Chilson, P. B., Ulbrich, C. W., and Larsen, M. F., “Observation of a tropical thunderstorm using a vertically pointing, dual-frequency, collinear beam Doppler radar”, J. Atmos. Ocean. Tech., 10, pp. 663–673, 1993.
﹝16﹞Chu, Y.-H., Chian, L.-P., and Liu, C.-H., “The investigations of the atmospheric precipitation by using Chung-Li VHF radar”, Radio Sci., 26, pp. 717–729, 1991.
﹝17﹞Chu, Y.-H. and Lin, C.-S., “The severe depletion of turbulent echo power in precipitation using the Chung-Li VHF Doppler radar”, Radio Sci., 29, pp. 1311–1320, 1994.
﹝18﹞Rao, T. N., Rao, D. N., and Raghavan, S., “Tropical precipitating systems observed with Indian MST radar”, Radio Sci., 34, pp. 1125–1139, 1999.
﹝19﹞Su, C.-L., Chu, Y.-H., and Lo, I.-Y., “Negative correlation between terminal velocity and VHF radar reflectivity: observation and plausible explanation”, Ann. Geophys., 27, pp. 1631–1642, https://doi.org/10.5194/angeo-27-1631-2009, 2009.
﹝20﹞Franke, S. J., “Pulse compression and frequency domain interferometry with a frequency-hopped MST radar”, Radio Sci., 25, pp. 565–574, 1990.
﹝21﹞Chilson, P. B., Yu, T.-Y., Strauch, R. G., Muschinski, A., and Palmer, R. D., “Implementation and validation of range imaging on a UHF radar wind profiler”, J. Atmos. Ocean. Tech., 20, pp. 987–996, 2003.
﹝22﹞Palmer, R. D., Yu, T.-Y., and Chilson, P. B., “Range imaging using frequency diversity”, Radio Sci., 34, pp. 1485–1496, https://doi.org/10.1029/1999RS900089, 1999.
﹝23﹞Luce, H., Yamamoto, M., Fukao, S., Hélal, D., and Crochet, M., “A frequency radar interferometric imaging (FII) technique based on high-resolution methods”, J. Atmos. Sol.-Terr. Phy., 63, pp. 221–234, 2001.
﹝24﹞Luce, H., Hassenpflug, G., Yamamoto, M., and Fukao, S., “Comparisons of refractive index gradient and stability profiles measured by balloons and the MU radar at a high vertical resolution in the lower stratosphere”, Ann. Geophys., 25, pp. 47–57, https://doi.org/10.5194/angeo-25-47-2007, 2007.
﹝25﹞Luce, H., Takai, T., Nakamura, N., Yamamoto, M., and Fukao, S., “Simultaneous observations of thin humidity gradients in the lower troposphere with a Raman Lidar and the very high-frequency middle- and upperatmosphere radar”, J. Atmos. Ocean. Tech., 27, pp. 950–956, 2010.
﹝26﹞Chen, J.-S., Tsai, S.-C., Su, C.-L., and Chu, Y.-H., “Evaluation of multifrequency range imaging technique implemented on the Chung-Li VHF atmospheric radar”, Atmos. Meas. Tech., 9, pp. 2345–2355, https://doi.org/10.5194/amt-9-2345-2016, 2016a.
﹝27﹞Chen, J.-S., Chu, Y.-H., Su, C.-L., Hashiguchi, H., and Li, Y., “Range imaging of E-region field-aligned irregularities by using a multifrequency technique: validation and initial results”, IEEE T. Geosci. Remote Sens., 54, pp. 3739–3749, https://doi.org/10.1109/TGRS.2016.2521702, 2016b.
﹝28﹞Chilson, P. B., Palmer, R. D., Muschinski, A., Hooper, D. A., Schmidt, G., and Steinhagen, H., “SOMARE-99: A demonstrational field campaign for ultra-high resolution VHF atmospheric profiling using frequency diversity”, Radio Sci., 36, pp. 695–707, 2001.
﹝29﹞Chilson, P. B., “The retrieval and validation of Doppler velocity estimates from range imaging”, J. Atmos. Ocean. Tech., 21, pp. 1033–1043, 2004.
﹝30﹞Yu, T.-Y., Furumoto, J., and Yamamoto, M., “Clutter suppression for high-resolution atmospheric observations using multiple receivers and multiple frequencies”, Radio Sci., 45, RS4011, https://doi.org/10.1029/2009RS004330, 2010.
﹝31﹞Chen, J.-S. and Zecha, M., “Multiple-frequency range imaging using the OSWIN VHF radar: phase calibration and first results”, Radio Sci., 44, RS1010, https://doi.org/10.1029/2008RS003916, 2009.
﹝32﹞Palmer, R. D., Cheong, B. L., Hoffman, M. W., Fraser, S. J., and López-Dekker, F. J., “Observations of the small-scale variability of precipitation using an imaging radar”, J. Atmos. Ocean. Tech., 22, pp. 1122–1137, https://doi.org/10.1175/JTECH1775.1, 2005.
﹝33﹞Williams, C. R., “Vertical air motion retrieved from dual-frequency profiler observation”, J. Atmos. Ocean. Tech., 29, pp. 1471–1480, 2012.
﹝34﹞Gan, T., Yamamoto, M. K., Hashiguchi, H., Okamoto, H., and Yamamoto, M., “Spectral parameters estimation in precipitation for 50MHz band atmospheric radars”, Radio Sci., 50, pp. 789–803, 2015.
﹝35﹞Chen, J.‐S., P. Hoffmann, M. Zecha, and C.‐H. Hsieh, “Coherent radar imaging of mesosphere summer echoes: Influence of radar beam pattern and tilted structures on atmospheric echo center”, Radio Sci., 43, RS1002, doi:10.1029/2006RS003593.
﹝36﹞曾忠一,大氣衛星遙測學,國立編譯館主編,渤海堂文化事業公司,台北市,民國七十七年。
﹝37﹞Zhang, Z. Y. and S. J. Lin, “Microwave Radiometry and Its Application”, Publishing House of Electronic Industry, Beijing, 1995.
﹝38﹞Kaste, O. C., “The comparison of signal and noise value with measurement value about 35 GHz passive radiometer”, AD-A 040366 , pp. 16-24, 1980.
﹝39﹞Kutuza, B. G., G. K. Zagorin, A. Hornbostel, and A. Schroth, “Physical modeling of passive polarimetric microwave observations of the atmosphere with respect to the third stokes parameter”, Radio Sci., 33, pp. 677–695, 1998.
﹝40﹞Woodman, R. F., “Coherent radar imaging: signal processing and statistical properties”, Radio Sci., 32, pp. 2372–2391, 1997.
﹝41﹞Palmer, R. D., Gopalam, S., Yu, T.-Y., and Fukao, S., “Coherent radar imaging using Capon’s method”, Radio Sci., 33, pp. 1585–1598, 1998.
﹝42﹞Chen, J. S., J. Y. Liu, and Y. H. Chu, “Effects of anisotropy and power spectrum of refractivity irregularities on determination of layer thickness and layer position using the frequency domain interferometry technique”, Radio Sci., 32, pp. 437-451, 1997.
﹝43﹞Capon, J., “High-resolution frequency-wavenumber spectrum analysis”, Proc. IEEE, 57, pp. 1408-1419, 1969.
﹝44﹞Luenberger, D.G., “Linear and nonlinear Programming”, Addison-Wesley, Reading, Mass, 1984.
﹝45﹞Yu, T.-Y., Palmer, R. D., and Hysell, D. L., “A simulation study of coherent radar imaging”, Radio Sci., 35, pp. 1129–1141, 2000.
﹝46﹞Doviak, R. J., and D. S. Zrnic’, “Reflection and scattering formula for anisotropically turbulent air”, Radio Sci., 19, pp. 325–336, 1984.
﹝47﹞Chen, J.-S., Su, C.-L., Chu, Y.-H., Hassenpflug, G., and Zecha, M., “Extended application of a novel phase calibration method of multiple-frequency range imaging to the Chung–Li and MU VHF radars”, J. Atmos. Ocean. Tech., 26, pp. 2488–2500, 2009.
﹝48﹞Yu, T.-Y. and Palmer, R. D., “Atmospheric radar imaging using spatial and frequency diversity”, Radio Sci., 36, pp. 1493–1504, 2001.
﹝49﹞Li, J. and Stoica, P., “An adaptive filtering approach to spectral estimation and SAR imaging”, IEEE T. Signal Proces., 44, pp. 1469–1484, 1996.
﹝50﹞Garbanzo-Salas, M. and Hocking,W. K., “Spectral Analysis comparisons of Fourier-Theory-based methods and Minimum Variance (Capon) methods”, J. Atmos. Sol.-Terr. Phy., 132, pp. 92–100, 2015.
﹝51﹞Williams, C. R., W. L. Ecklund, and K. S. Gage, “Classification of precipitating clouds in the tropics using 915-MHz wind profilers”, J. Atmos. Oceanic Technol., 12, pp. 996–1012, 1995.
﹝52﹞White, A. B., D. J. Gottas, E. T. Strem, F. M. Ralph, and P. J. Neiman, “An automated brightband height detection algorithm for use with Doppler radar spectral moments”, J. Atmos. Oceanic Technol., 19, pp. 687–697, 2002.
﹝53﹞Pan , C. J., K. Krishna Reddy, H. -C. Lai, and, S. -S. Yang, “Role of mixed precipitating cloud systems on the typhoon rainfall”, Ann. Geophys., 28, pp. 11–16, 2010.
﹝54﹞柯人豪,「利用剖風儀雷達分析台灣及帛琉地區的降水融解層特性」,國立中央大學,碩士論文,民國100年。
﹝55﹞陳睿祥,「利用中壢特高頻雷達觀測潭美颱風的降水現象」,國立中央大學,碩士論文,民國103年。
﹝56﹞王寶貫,雲物理學,初版,國立編譯館主編,渤海堂文化事業公司,臺北市,民國八十六年。
﹝57﹞朱延祥、蘇清論:太空測計及操作,2018年10月8日,取自https://irsl.ss.ncu.edu.tw/media/course/。
指導教授 朱延祥 審核日期 2020-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明