博碩士論文 105226039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:143 、訪客IP:3.138.102.178
姓名 陳建霖(Jian-Ling Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 三倍頻耗乏掃描結構照明顯微術之模擬及分析
(Simulation and Analysis of scanning Structured Illumination Microscopy based on Depletion of Third Harmonic Generation)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析★ 應用線狀結構照明提升雙光子顯微鏡解析度
★ 以同調結構照明顯微術進行散射樣本解析度之提升★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
★ 微投影光學切片超光譜顯微術★ 使用結構照明顯微術觀察活體小鼠毛囊生長週期之變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-16以後開放)
摘要(中) 雙光子螢光顯微術擁有良好縱向解析度(longitudinal resolution)是觀察切片樣本的有力工具,為追求影像的橫向解析度(lateral resolution)的提升,過去的研究曾結合掃描式結構照明顯微術的原理成功使橫向解析度提升為原來的1.39倍,但他們發現照明條紋的對比度受樣本散射的離焦雜訊影響變差,使得解析度難以進一步提升,對此本研究提出改善方法,減少離焦雜訊對影像的影響以提高條紋對比度。
本研究改良過去研究使用的系統,將偵測器改為光電倍增管(photomultiplier tube, PMT),藉由同時把樣本訊號及離焦雜訊記錄為PMT影像的單一像素,可以減少離焦雜訊對PMT影像的影響,並將接收訊號由螢光改為樣本的三倍頻(third-harmonic generation)以觀察樣本界面(interface)的結構,為了對應這些變動,必須耗乏(deplete)樣本的三階非線性係數才能得到帶有弦波條紋的PMT影像,並用PMT影像重建橫向解析度有提升的影像。
模擬上述改良方法取得的重建影像,並經過參數掃描分析後得知,若要提升橫向解析度1.39倍,則選擇樣本的三倍頻要能被衰減原強度的0.278,且PMT影像之SNR值要在3以上;若樣本的三倍頻能被衰減原強度的0.586且PMT影像SNR在4以上,則解析度可提升2倍,此為結構照明顯微術的理論極限。
摘要(英) Two-photon fluorescence microscopy is a powerful system to observe details of sections with good longitudinal resolution. In order to get better lateral resolution, some researches combined scanning structured illumination microscopy and two-photon fluorescence microscopy to improved lateral resolution. One of them improved lateral resolution by a factor of 1.39 times, but it found that the enhancement of lateral resolution is restricted by bad contrast of illumination pattern due to defocus noise from scattering of sample.
We reformed system of the research to improve contrast of illumination pattern by changing detector, and the system apply third-harmonic generation of sample as signal to observe structure of interface. The new system applies photomultiplier tube (PMT) as detector to record signal and defocus noise in one pixel of PMT image so as to reduce the effect from defocus noise. According to this architecture, it has to get PMT images with sinusoidal pattern via depleting third-order nonlinear coefficient of sample. Finally reconstruct image with improved lateral resolution by PMT images.
In this study, we simulated images reconstructed by our system and analyzed the improvement of lateral resolution of reconstructed images. With parameter scanning, 1.39 times improvement of lateral resolution can be achieved if third-harmonic generation of sample could be attenuated by 0.278 of origin with SNR of PMT image better than 3; theoretical limitation of improvement of lateral resolution can be achieved if third-harmonic generation of sample could be attenuated by 0.586 of origin with SNR of PMT image better than 4.
關鍵字(中) ★ 結構照明顯微術
★ 基態耗乏
★ 三倍頻
★ 掃描結構照明顯微術
關鍵字(英) ★ Structured Illumination Microscopy
★ Ground state depletion
★ third-harmonic generation
★ scanning structured illumination microscopy
論文目次 第一章 背景回顧
1.1超解析顯微術 ……………………………………………………………..….. 1
1.2結構照明顯微術 …………….………………………………..……………… 3
1.3動機 ……………………………………………………………..……………. 5
1.4目的……………………………………………………………..……………... 6
1.5論文結構……………………………………………………………..………… 7
第二章 原理
2.1三倍頻 ……………………………………………………………..………….. 8
2.2 基態耗乏原理及系統應用…………………………………………………… 9
2.3廣域結構照明顯微術原理 ………………………………….………..…..… 11
2.4點掃描結構照明顯微術 …………..…………………………………..……. 14
第三章 系統架構
3.1系統架構 ……………………………………………………………..……... 17
3.2激發光與耗乏光之產生 ……………………………………………………. 18
3.3樣本螢光強度調制 ……………………………………………………….... 18
3.4模擬工具 ……………………………………………………………..…….. 18
第四章 模擬結果與分析
4.1產生具弦波調制之三倍頻 …..…. ….……………………………………… 19
4.2結構照明影像之模擬與分析 ………………………………………………. 20
4.3加入雜訊之超解析影像重建 ……………………………………………….. 25
4.4解析度提升能力之比較與分析 ...……………………………………….….. 29
第五章 結論 ………………………………………………………………………. 31
參考文獻 …………………………………………………………………………... 32
參考文獻 1. S. W. Hell, J. Wichmann, ”Breaking the diffraction resolution limit by stimulated emission stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780-782 (1994).
2. T. A. Klar, S. W. Hell, ”Subdiffraction resolution in far-field fluorescence microscopy,” Opt. Lett. 24(14), 954-956 (1999).
3. X. Liu, W. Rudolph, and J. L. Thomas, ”Photobleaching resistance of stimulated parametric emission in microscopy,” Opt. Lett. 34(3), 304-306 (2009).
4. T. Scheul, C. D’Amico, I. Wang, and J. C. Vial, ”Two-photon excitation and stimulated emission depletion by a single wavelength,” Opt. Express 19(19), 18036-18048 (2011).
5. S.W. Hell, M. Kroug, ”Ground-state-depletion fluorscence microscopy: a concept for breaking the diffraction resolution limit,” Appl. Phys. B 60, 495-497 (1995).
6. S. W. Hell, ”Increasing the Resolution of Far-Field Fluorescence Light Microscopy by Point-Spread-Function Engineering,” in Topics in Fluorescence Spectroscopy 5, J. Lakowicz. Plenum Press, ed. (New York, 1997), pp.361-426.
7. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, ”Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943-945 (2008).
8. K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, ”Metastable Dark States Enable Ground State Depletion Microscopy of Nitrogen Vacancy Centers in Diamond with Diffraction-Unlimited Resolution,” Nano Lett. 10, 3199-3203 (2010).
9. M. J. Rust, M. Bates, and X. W. Zhuang, ”Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793-795 (2006).
10. B. O. Huang, W. Q. Wang, M. Bates, and X. W. Zhuang, ”Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319, 810-813 (2008).
11. M. W. Gramlich, J. Bae, R. C. Hayward, and J. L. Ross, ”Fluorescence imaging of nanoscale domains in polymer blends using stochastic optical reconstruction microscopy (STORM),” Opt. Express 22(7), 8438-8450 (2014).
12. M. G. L. GUSTAFSSON, ”Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82-87 (2000).
13. M. G. L. GUSTAFSSON, ”Nonlinear structured-illuminati microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,” PNAS. 102(37), 13081-13086 (2005).
14. M. Saxena, G. Eluru, and S. S. Gorthi, ”Structured illumination microscopy,” Adv. Opt. Photonics 7, 241-275 (2015).
15. M. A. A. Neil, R. Juškaitis, and T. Wilson, ”Method of obtaining optical sectioning by using structured light in a conventional microscope,” Opt. Lett. 22(24), 1905-1907 (1997).
16. M. A. A. Neil, A. Squire, R. Juškaitis, P. I. H. Bastiaens, and T. Wilson, ”Wide-field optically sectioning fluorescence microscopy with laser illumination,” J. Microsc. 197(1), 1-4 (2000).
17. S. Lin, B. Isaac, S. Uzawa, D. A. Agard, J. W. Sedat, and M. G. L. Gustafsson, ”I5S: Wide-Field Light Microscopy with 100-nm-Scale Resolution in Three Dimensions,” Biophys. J. 94, 4971-4983 (2008).
18. J. T. Frohn, H. F. Knapp, and A. Stemmer, ”True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” PNAS. 97(13), 7232-7236 (2000).
19. P. Křížek, I. Raška, and G. M. Hagen, ”Flexible structured illumination microscope with a programmable illumination array,” Opt. Express 20(22), 24585-24599 (2012).
20. C. F. Jiang, B. W. Li, and S. Zhang, ”Pixel-by-pixel absolute phase retrieval using three phase-shifted fringe patterns without markers,” Opt. Laser. Eng. 91, 232–241 (2017).
21. N. Bozinovic, C. Ventalon, T. Ford, and J. Mertz, ”Fluorescence endomicroscopy with structured illumination,” Opt. Express 16(11), 8016-8025 (2008).
22. D. W. Piston, M. S. Kirby, H. P. Cheng, W. J. Lederer, and W. W. Webb, ”Two-photon-excitation fluorescence imaging of three-dimensional calcium-ion activity,” Appl. Opt. 33(4), 662-669 (1994).
23. M. Gu, ”Resolution in three-photon fluorescence scanning microscopy,” Opt. Lett. 21(13), 988-990 (1996).
24. C. H. Yeh, S. Y. Chen, ”Resolution enhancement of two-photon microscopy via intensity-modulated laser scanning structured illumination,” Appl. Opt. 54(9), 2309-2317 (2015).
25. O. Mandula, M. Kielhorn, K. Wicker, G. Krampert, I. Kleppe, and R. Heintzmann, ”Line scan - structured illumination microscopy super-resolution imaging in thick fluorescent samples,” Opt. Express 20(22), 24167-24174 (2012).
26. B. E. Urban, J. Yi, S. Y. Chen, B. Q. Dong, Y. L. Zhu, S. H. DeVries, V. Backman, and H. F. Zhang, ”Super-resolution two-photon microscopy via scanning patterned illumination,” Phy. Rev. E 91(042703), 1-6 (2015).
27. P. J. Campagnola, L. M. Loew, ”Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356-1360 (2003).
28. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, ”High-Resolution Nonlinear Optical Imaging of Live Cells by Second Harmonic Generation,” Biophys. J. 77, 3341-3349 (1999).
29. P. Mahou, N. Olivier, G. Labroille, L. Duloquin, J. M. Sintes, N. Peyriéras, R. Legouis, D. Débarre, and E. Beaurepaire, ”Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos,” Biomed. Opt. Express 2(10), 2837-1849 (2011).
30. ”Nonlinear susceptibility,” in Principles of nonlinear optics, Y. C. Huang, eds. (2016), pp.97-124.
31. M. Sheik-Bahea, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, ”Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron 26(4), 760-769(1990)
32. ”Frequency analysis of optical image systems,” in Fourier Optics, J. W. Goodman, 3rd eds. (2004), pp.127-172.
33. A. Lal, C. Y. Shan, and P. Xi, ”Structured Illumination Microscopy Image Reconstruction Algorithm,” IEEE J. Sel. Top. Quant. 22(4), 1-14 (2016).
指導教授 陳思妤(Szu-Yu Chen) 審核日期 2020-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明