參考文獻 |
[1] J.-K. Park, Principles and Applications of Lithium Secondary Batteries, Wiley-VCH (2012).
[2] D. Linden, Thomas B. Reddy (editor), Handbook of Batteries, McGraw-Hill Professional, 3rd Edition, Chapters.
[3] G.E. Blomgren, The Development and Future of Lithium Ion Batteries, J Electrochem Soc 164(1) (2016) A5019-A5025.
[4] Lithium-Ion Battery Market Overview, Variant market research.
[5] A. Bilich, K. Langham, R. Geyer, L. Goyal, J. Hansen, A. Krishnan, J. Bergesen, P. Sinha, Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities, Environ Sci Technol 51(2) (2017) 1043-1052.
[6] M.A. Pellow, C.J.M. Emmott, C.J. Barnhart, S.M. Benson, Hydrogen or batteries for grid storage? A net energy analysis, Energy Environ Sci 8(7) (2015) 1938-1952.
[7] M. Arbabzadeh, J.X. Johnson, G.A. Keoleian, P.G. Rasmussen, L.T. Thompson, Twelve Principles for Green Energy Storage in Grid Applications, Environ Sci Technol 50(2) (2016) 1046-1055.
[8] B.V. Ratnakumar, M.C. Smart, A. Kindler, H. Frank, R. Ewell, S. Surampudi, Lithium batteries for aerospace applications: 2003 Mars Exploration Rover, J Power Sources 119-121 (2003) 906-910.
[9] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat Chem 7(1) (2015) 19-29.
[10] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, J Am Chem Soc 135(4) (2013) 1167-1176.
[11] Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J Power Sources 100(1) (2001) 101-106.
[12] R. Zhang, Y. Du, D. Li, D. Shen, J. Yang, Z. Guo, H.K. Liu, A.A. Elzatahry, D. Zhao, Highly reversible and large lithium storage in mesoporous si/c nanocomposite anodes with silicon nanoparticles embedded in a carbon framework, Adv Mater 26(39) (2014) 6749-55.
[13] Y. Mekonnen, A. Sundararajan, A.I. Sarwat, A review of cathode and anode materials for lithium-ion batteries, SoutheastCon 2016, IEEE, 2016, pp. 1-6.
[14] A. Jain, B.J. Paul, S. Kim, V. Jain, J. Kim, A.K. Rai, Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery, J Alloys Compd 772 (2019) 72-79.
[15] J. Wang, T. Xu, X. Huang, H. Li, T. Ma, Recent progress of silicon composites as anode materials for secondary batteries, RSC Advances 6(90) (2016) 87778-87790.
[16] J. Yang, X.Y. Zhou, J. Li, Y.L. Zou, J.J. Tang, Study of nano-porous hard carbons as anode materials for lithium ion batteries, Mater Chem Phys 135(2-3) (2012) 445-450.
[17] C.A. Bridges, X.-G. Sun, J. Zhao, M.P. Paranthaman, S. Dai, In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering, The Journal of Physical Chemistry C 116(14) (2012) 7701-7711.
[18] V. Meunier, J. Kephart, C. Roland, J. Bernholc, Ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems, Phys Rev Lett 88(7) (2002) 075506.
[19] C.M. Schauerman, M.J. Ganter, G. Gaustad, C.W. Babbitt, R.P. Raffaelle, B.J. Landi, Recycling single-wall carbon nanotube anodes from lithium ion batteries, J Mater Chem 22(24) (2012) 12008-12015.
[20] K. Nishidate, M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, PhRvB 71(24) (2005) 245418.
[21] J. Zhao, A. Buldum, J. Han, J.P. Lu, First-principles study of Li-intercalated carbon nanotube ropes, Phys Rev Lett 85(8) (2000) 1706-1709.
[22] H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors, J Power Sources 195(21) (2010) 7452-7456.
[23] N.G. Rudawski, B.R. Yates, M.R. Holzworth, K.S. Jones, R.G. Elliman, A.A. Volinsky, Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries, J Power Sources 223 (2013) 336-340.
[24] A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel, Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries, ACS Applied Materials & Interfaces 4(9) (2012) 4658-4664.
[25] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage, Adv Mater 24(38) (2012) 5166-5180.
[26] Z. Wang, L. Zhou, X.W. Lou, Metal Oxide Hollow Nanostructures for Lithium-ion Batteries, Adv Mater 24(14) (2012) 1903-1911.
[27] P.P. Prosini, M. Carewska, S. Loreti, C. Minarini, S. Passerini, Lithium iron oxide as alternative anode for li-ion batteries, Int J Inorg Mater 2(4) (2000) 365-370.
[28] L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy Environ Sci 4(8) (2011) 2682-2699.
[29] J. Xu, Q. Zhang, Y.-T. Cheng, High capacity silicon electrodes with nafion as binders for lithium-ion batteries, J Electrochem Soc 163(3) (2016) A401-A405.
[30] R. Maddipatla, C. Loka, W. Choi, K.-S. Lee, Nanocomposite of Si/C Anode Material Prepared by Hybrid Process of High-Energy Mechanical Milling and Carbonization for Li-Ion Secondary Batteries, Appl Sci 8(11) (2018) 2140.
[31] M.J. Loveridge, M.J. Lain, I.D. Johnson, A. Roberts, S.D. Beattie, R. Dashwood, J.A. Darr, R. Bhagat, Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes, Sci Rep 6 (2016) 37787.
[32] C.R. Cabrera, F. Miranda, Advanced nanomaterials for aerospace applications, Pan Stanford2014.
[33] W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, Q. Zhang, P.K. Chu, K. Huo, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes, Nature communications 10(1) (2019) 1447.
[34] X. Song, X. Wang, Z. Sun, P. Zhang, L. Gao, Recent Developments in Silicon Anode Materials for High Performance Lithium-Ion Batteries, Journal of Material Matters 8 (2016).
[35] D. Liao, X. Kuang, J. Xiang, X. Wang, A Silicon Anode Material with Layered Structure for the Lithium-ion Battery, Journal of Physics: Conference Series, IOP Publishing, 2018, p. 012024.
[36] J. Sakabe, N. Ohta, T. Ohnishi, K. Mitsuishi, K. Takada, Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Commun Chem 1(1) (2018) 24.
[37] R. Dash, S. Pannala, Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries, Sci Rep 6 (2016) 27449.
[38] S. Sekar, A.T. Aqueel Ahmed, A.I. Inamdar, Y. Lee, H. Im, D.Y. Kim, S. Lee, Activated Carbon-Decorated Spherical Silicon Nanocrystal Composites Synchronously-Derived from Rice Husks for Anodic Source of Lithium-Ion Battery, Nanomaterials 9(7) (2019) 1055.
[39] S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu, Amorphous Carbon-Coated Silicon Nanocomposites: A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries, The Journal of Physical Chemistry C 111(29) (2007) 11131-11138.
[40] H. Kim, M. Seo, M.H. Park, J. Cho, A critical size of silicon nano‐anodes for lithium rechargeable batteries, Angew Chem Int Ed 49(12) (2010) 2146-2149.
[41] A. Veluchamy, C.-H. Doh, Silicon Based Composite Anode for Lithium Ion Battery, INTECH2011.
[42] N. Dimov, Y. Xia, M. Yoshio, Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features, J Power Sources 171(2) (2007) 886-893.
[43] W. Wang, M.K. Datta, P.N. Kumta, Silicon-based composite anodes for Li-ion rechargeable batteries, J Mater Chem 17(30) (2007) 3229-3237.
[44] J. Guo, X. Chen, C. Wang, Carbon scaffold structured silicon anodes for lithium-ion batteries, J Mater Chem 20(24) (2010) 5035-5040.
[45] H. Zhang, P.V. Braun, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett 12(6) (2012) 2778-2783.
[46] Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu, H. Jiang, F. Wei, Si@ Si3N4@ C composite with egg-like structure as high-performance anode material for lithium ion batteries, Energy Stor Mater (2019).
[47] J. Yang, R.C. De Guzman, S.O. Salley, K.S. Ng, B.-H. Chen, M.M.-C. Cheng, Plasma enhanced chemical vapor deposition silicon nitride for a high-performance lithium ion battery anode, J Power Sources 269 (2014) 520-525.
[48] R.C. de Guzman, J. Yang, M.M.-C. Cheng, S.O. Salley, K.S. Ng, High capacity silicon nitride-based composite anodes for lithium ion batteries, Journal of Materials Chemistry A 2(35) (2014) 14577-14584.
[49] C.-Y. Wu, C.-C. Chang, J.-G. Duh, Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode, J Power Sources 325 (2016) 64-70.
[50] A. Ulvestad, J.P. Mæhlen, M. Kirkengen, Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction, J Power Sources 399 (2018) 414-421.
[51] A. Ulvestad, H.F. Andersen, I.J. Jensen, T.T. Mongstad, J.P. Mæhlen, Ø. Prytz, M. Kirkengen, Substoichiometric Silicon Nitride–An Anode Material for Li-ion Batteries Promising High Stability and High Capacity, Sci Rep 8(1) (2018) 8634.
[52] X. Zhang, G. Pan, G. Li, J. Qu, X. Gao, Si–Si3N4 composites as anode materials for lithium ion batteries, Solid State Ion 178(15-18) (2007) 1107-1112.
[53] S.-J. Kim, M.-C. Kim, S.-B. Han, G.-H. Lee, H.-S. Choe, D.-H. Kwak, S.-Y. Choi, B.-G. Son, M.-S. Shin, K.-W. Park, 3D flexible Si based-composite (Si@ Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries, Nano Energy 27 (2016) 545-553.
[54] J. Guan, L. Cheng, M. Li, Microstructure and Mechanical Properties of Si3N4-Fe3Si Composites Prepared by Gas-Pressure Sintering, Materials 11(7) (2018) 1206.
[55] C.C. Guedes-Silva, A.C.D. Rodas, A.C. Silva, C. Ribeiro, F.M.d.S. Carvalho, O.Z. Higa, T.d.S. Ferreira, Microstructure, Mechanical Properties and in vitro Biological Behavior of Silicon Nitride Ceramics, Materials Research 21(6) (2018).
[56] M. Mazzocchi, A. Bellosi, On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity, J Mater Sci Mater Med 19(8) (2008) 2881-2887.
[57] H. Schulz, K. Thiemann, Defect structure of the ionic conductor lithium nitride (Li3N), Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 35(2) (1979) 309-314.
[58] A. Rabenau, Lithium nitride, Li 3 N, an unusual ionic conductor, Festkörperprobleme 18, Springer1978, pp. 77-108.
[59] M. Martı́n-Gil, M. Rabanal, A. Varez, A. Kuhn, F. Garcı́a-Alvarado, Mechanical grinding of Si3N4 to be used as an electrode in lithium batteries, Mater Lett 57(20) (2003) 3063-3069.
[60] T. Lapp, S. Skaarup, A. Hooper, Ionic conductivity of pure and doped Li3N, Solid State Ion 11(2) (1983) 97-103.
[61] N. Kalaiselvi, Synthesis and electrochemical characterization of novel category Si3-xMxN4 (M= Co, Ni, Fe) anodes for rechargeable lithium batteries, Int J Electrochem Sci 2 (2007) 478-487.
[62] H. Li, H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem Commun 48(9) (2012) 1201-1217.
[63] T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, Journal of Materials Chemistry A 7(7) (2019) 2942-2964.
[64] G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, D. Bäuerle, Single-step fabrication of silicon-cone arrays, Appl Phys Lett 82(5) (2003) 692-693.
[65] M. Hanfland, U. Schwarz, K. Syassen, K. Takemura, Crystal structure of the high-pressure phase silicon VI, Phys Rev Lett 82(6) (1999) 1197.
[66] K.E. Petersen, Silicon as a mechanical material, Proc IEEE 70(5) (1982) 420-457.
[67] T. Sumigawa, S. Ashida, S. Tanaka, K. Sanada, T. Kitamura, Fracture toughness of silicon in nanometer-scale singular stress field, Eng Fract Mech 150 (2015) 161-167.
[68] H.M.N.U.H. KHAN, S. Shi, D. Jiang, Y. Tan, Evaluation on electrical resistivity of silicon materials after electron beam melting, Bull Mater Sci 38(5) (2015) 1429-1433.
[69] F. Ozanam, M. Rosso, Silicon as anode material for Li-ion batteries, Materials Science and Engineering: B 213 (2016) 2-11.
[70] L. Yu, J. Liu, S. He, C. Huang, L. Gan, Z. Gong, M. Long, A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries, J Phys Chem Solids 135 (2019) 109113.
[71] T. Zhao, D. Zhu, W. Li, A. Li, J. Zhang, Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes, J Power Sources 439 (2019) 227027.
[72] M. Ashuri, Q. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale 8(1) (2016) 74-103.
[73] D. Ma, Z. Cao, A. Hu, Si-Based Anode Materials for Li-Ion Batteries: A Mini Review, Nano-micro letters 6(4) (2014) 347-358.
[74] A. Franco Gonzalez, N.-H. Yang, R.-S. Liu, Silicon anode design for lithium-ion batteries: progress and perspectives, The Journal of Physical Chemistry C 121(50) (2017) 27775-27787.
[75] F.L. Riley, Silicon nitride and related materials, J Am Ceram Soc 83(2) (2000) 245-265.
[76] J. Robertson, Electronic structure of silicon nitride, Philos Mag B 63(1) (1991) 47-77.
[77] L. Weiss, T. Engelhardt, On Nitrogen Compounds of Silicon, Z anorg Chem 65 (1910) 38-104.
[78] E. Turkdogan, P.M. Bills, V.A. Tippett, Silicon nitrides: Some physico‐chemical properties, Journal of Applied Chemistry 8(5) (1958) 296-302.
[79] G. Ziegler, J. Heinrich, G. Wötting, Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, JMatS 22(9) (1987) 3041-3086.
[80] Y.-N. Xu, W. Ching, Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide, PhRvB 51(24) (1995) 17379.
[81] S.-Y. Ren, W. Ching, Electronic structures of β-and α-silicon nitride, PhRvB 23(10) (1981) 5454.
[82] H.J. Kleebe, G. Pezzotti, G. Ziegler, Microstructure and fracture toughness of Si3N4 ceramics: combined roles of grain morphology and secondary phase chemistry, J Am Ceram Soc 82(7) (1999) 1857-1867.
[83] Y. Tajima, K. Urashima, Improvement of strength and toughness of silicon nitride ceramics, Tailoring of Mechanical Properties of Si3N4 Ceramics, Springer1994, pp. 101-109.
[84] S. Ruddlesden, P. Popper, On the crystal structure of the nitrides of silicon and germanium, Acta Crystallogr 11(7) (1958) 465-468.
[85] F. Lange, Fracture Toughness of Si3N4 as a Function of the Initial α‐phase Content, J Am Ceram Soc 62(7‐8) (1979) 428-430.
[86] P. Becher, H. Lin, S. Hwang, M. Hoffmann, I.-W. Chen, The influence of microstructure on the mechanical behavior of silicon nitride ceramics, MRS Online Proceedings Library Archive 287 (1992).
[87] M. Hoffmann, Analysis of microstructural development and mechanical properties of Si 3 N 4 ceramics, Tailoring of mechanical properties of Si3N4 ceramics, Springer1994, pp. 59-72.
[88] X. Zhu, Y. Sakka, Textured silicon nitride: processing and anisotropic properties, Sci Technol Adv Mater 9(3) (2008) 033001.
[89] K. Kijima, S.i. Shirasaki, Nitrogen self‐diffusion in silicon nitride, The Journal of Chemical Physics 65(7) (1976) 2668-2671.
[90] E. Butler, Observations of dislocations in β-silicon nitride, Philos Mag 24(190) (1971) 829-834.
[91] D. Ahn, C. Kim, J.-G. Lee, B. Park, The effect of nitrogen on the cycling performance in thin-film Si1−xNx anode, J Solid State Chem 181(9) (2008) 2139-2142.
[92] N. Suzuki, R.B. Cervera, T. Ohnishi, K. Takada, Silicon nitride thin film electrode for lithium-ion batteries, J Power Sources 231 (2013) 186-189.
[93] A. Ulvestad, H.F. Andersen, J.P. Mæhlen, Ø. Prytz, M. Kirkengen, Long-term cyclability of substoichiometric silicon nitride thin film anodes for Li-ion batteries, Sci Rep 7(1) (2017) 13315.
[94] X.N. Zhang, G.L. Pan, G.R. Li, J.Q. Qu, X.P. Gao, Si–Si3N4 composites as anode materials for lithium ion batteries, Solid State Ion 178(15) (2007) 1107-1112.
[95] X.D. Huang, X.F. Gan, F. Zhang, Q.A. Huang, J.Z. Yang, Improved electrochemical performance of silicon nitride film by hydrogen incorporation for lithium-ion battery anode, Electrochim Acta 268 (2018) 241-247.
[96] L.G. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.d.O. Moutinho, A. Lombardo, T. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett 11(8) (2011) 3190-3196.
[97] M. Ahmad, J. Zhao, F. Zhang, C. Pan, J. Zhu, One-step synthesis route of the aligned and non-aligned single crystalline α-Si 3 N 4 nanowires, Science in China Series E: Technological Sciences 52(1) (2009) 1.
[98] M. Ahmad, J. Zhao, C. Pan, J. Zhu, Ordered arrays of high-quality single-crystalline α-Si3N4 nanowires: Synthesis, properties and applications, J Cryst Growth 311(20) (2009) 4486-4490.
[99] H.Y. Kim, J. Park, H. Yang, Synthesis of silicon nitride nanowires directly from the silicon substrates, Chem Phys Lett 372(1-2) (2003) 269-274.
[100] L.-W. Yin, Y. Bando, Y.-C. Zhu, Y.-B. Li, Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si 3 N 4) single-crystalline nanobelts, Appl Phys Lett 83(17) (2003) 3584-3586.
[101] J. Zhang, Y. Chen, T. Guo, Z. Lin, T. Wang, Sub-band-gap photoconductivity of individual α-Si3N4 nanowires, Nanotechnology 18(32) (2007) 325603.
[102] C. Vakifahmetoglu, E. Pippel, J. Woltersdorf, P. Colombo, Growth of one‐dimensional nanostructures in porous polymer‐derived ceramics by catalyst‐assisted pyrolysis. Part I: iron catalyst, J Am Ceram Soc 93(4) (2010) 959-968.
[103] I.-M. Low, Ceramic-matrix composites: microstructure, properties and applications, Woodhead Publishing2006.
[104] X. Deng, X. Li, B. Zhu, P. Chen, In-situ synthesis mechanism of plate-shaped β-Sialon and its effect on Al2O3–C refractory properties, Ceram Int 41(10) (2015) 14376-14382.
[105] Y.-X. Qi, M.-S. Li, C.-G. Wang, Y.-J. Bai, B. Zhu, Y.-X. Wang, Low-temperature preparation of silicon nitride via chemical metathesis route, Mater Lett 58(26) (2004) 3345-3347.
[106] F. Wang, X.F. Qin, G.Q. Jin, Y.Y. Wang, X.Y. Guo, Synthesis and characterization of Si3N4 thin nanobelts via direct nitridation of Si powders, Physica E: Low-dimensional Systems and Nanostructures 41(1) (2008) 120-123.
[107] F. Wang, X. Qin, L. Yang, Y. Meng, L. Sun, Synthesis and photoluminescence of Si3N4 nanowires from La/SiO2 composites and Si powders, Ceram Int 41(1) (2015) 1505-1510.
[108] A. Guo, M. Roso, M. Modesti, J. Liu, P. Colombo, Hierarchically structured polymer-derived ceramic fibers by electrospinning and catalyst-assisted pyrolysis, J Eur Ceram Soc 34(2) (2014) 549-554.
[109] O. Sahin, H. Güder, O. Uzun, E. Şahin, M. Sopicka-Lizer, H. Göçmez, E. Artunc, Preparation of Fine-Grained Silicon-Nitride Ceramics and their Characterization by Depth-Sensing Indentation Tests, Acta Physica Polonica, A 128 (2015).
[110] A. Dychalska, P. Popielarski, W. Franków, K. Fabisiak, K. Paprocki, M. Szybowicz, Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy, Materials Science-Poland 33(4) (2015) 799-805.
[111] C. Casiraghi, A. Ferrari, J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, PhRvB 72(8) (2005) 085401.
[112] M. Obrovac, L. Krause, Reversible cycling of crystalline silicon powder, J Electrochem Soc 154(2) (2007) A103-A108.
[113] M. Obrovac, L. Christensen, D.B. Le, J.R. Dahn, Alloy design for lithium-ion battery anodes, J Electrochem Soc 154(9) (2007) A849-A855.
[114] X. Wu, Z. Wang, L. Chen, X. Huang, Ag-enhanced SEI formation on Si particles for lithium batteries, Electrochem Commun 5(11) (2003) 935-939.
[115] Z. Wen, K. Wang, L. Chen, J. Xie, A new ternary composite lithium silicon nitride as anode material for lithium ion batteries, Electrochem Commun 8(8) (2006) 1349-1352.
[116] F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries, J Electrochem Soc 162(14) (2015) A2509-A2528.
[117] B.T. Hang, T. Ohnishi, M. Osada, X. Xu, K. Takada, T. Sasaki, Lithium silicon sulfide as an anode material in all-solid-state lithium batteries, J Power Sources 195(10) (2010) 3323-3327.
[118] X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization, Journal of Materials Chemistry A 1(39) (2013) 12334-12344.
[119] H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, Journal of Materials Chemistry A 2(13) (2014) 4739-4750.
[120] J. Wu, Y. Cao, H. Zhao, J. Mao, Z. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries, Carbon Energy 1(1) (2019) 57-76.
[121] Y. Xu, G. Yin, Y. Ma, P. Zuo, X. Cheng, Nanosized core/shell silicon@ carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source, J Mater Chem 20(16) (2010) 3216-3220.
[122] Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries, J Power Sources 195(6) (2010) 1720-1725.
[123] J. Guo, A. Sun, X. Chen, C. Wang, A. Manivannan, Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy, Electrochim Acta 56(11) (2011) 3981-3987.
[124] Y. Cheng, J. Huang, J. Li, Z. Xu, L. Cao, H. Ouyang, J. Yan, H. Qi, SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance, J Alloys Compd 658 (2016) 234-240.
[125] L.-F. Cui, Y. Yang, C.-M. Hsu, Y. Cui, Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries, Nano Lett 9(9) (2009) 3370-3374.
[126] W.S. Yoo, H. Harima, M. Yoshimoto, Polarized Raman signals from Si wafers: dependence of in-plane incident orientation of probing light, ECS J Solid State Sci Technol 4(9) (2015) P356-P363.
[127] N. Wada, S. Solin, J. Wong, S. Prochazka, Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4, J Non-Cryst Solids 43(1) (1981) 7-15.
[128] Y. Fu, J. Li, C. Cao, The superelastic mechanism of Si 3 N 4 microsprings using micro-Raman spectroscopy, PCCP 16(28) (2014) 14808-14812.
[129] T. Kuzuba, K. Kijima, Y. Bando, Raman‐active modes of alpha silicon nitride, The Journal of Chemical Physics 69(1) (1978) 40-42.
[130] K. Honda, S. Yokoyama, S.-i. Tanaka, Assignment of the Raman active vibration modes of β-Si 3 N 4 using micro-Raman scattering, J Appl Phys 85(10) (1999) 7380-7384.
[131] S. Yin, D. Zhao, Q. Ji, Y. Xia, S. Xia, X. Wang, M. Wang, J. Ban, Y. Zhang, E. Metwalli, X. Wang, Y. Xiao, X. Zuo, S. Xie, K. Fang, S. Liang, L. Zheng, B. Qiu, Z. Yang, Y. Lin, L. Chen, C. Wang, Z. Liu, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact, ACS Nano 12(1) (2018) 861-875.
[132] J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J Electrochem Soc 154(3) (2007) A156-A161.
[133] C.J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system, J Solid State Chem 37(3) (1981) 271-278.
[134] A. Netz, R.A. Huggins, W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems, J Power Sources 119 (2003) 95-100.
[135] Y. Fujisaki, T. Kijima, H. Ishiwara, High-performance metal–ferroelectric–insulator–semiconductor structures with a damage-free and hydrogen-free silicon–nitride buffer layer, Appl Phys Lett 78(9) (2001) 1285-1287.
[136] S.D. Beattie, M. Loveridge, M.J. Lain, S. Ferrari, B.J. Polzin, R. Bhagat, R. Dashwood, Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies, J Power Sources 302 (2016) 426-430.
[137] A. Eftekhari, Low voltage anode materials for lithium-ion batteries, Energy Stor Mater 7 (2017) 157-180.
[138] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater Today 19(2) (2016) 109-123.
[139] H.-S. Kim, K.-Y. Chung, B.-W. Cho, Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries, Journal of the Korean Electrochemical Society 11(1) (2008) 37-41.
[140] Z. Yan, J. Guo, High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction, Nano Energy (2019).
[141] F. Dou, L. Shi, G. Chen, D. Zhang, Silicon/carbon composite anode materials for lithium-ion batteries, Electrochemical Energy Reviews 2(1) (2019) 149-198.
[142] W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan, C.S. Ozkan, Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries, Sci Rep 7 (2017) 44838-44838.
[143] X. Liu, X. Zhu, D. Pan, Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries, Royal Soc Open Sci 5(6) (2018) 172370-172370.
[144] Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, Y. Takeda, Silicon/carbon composites as anode materials for Li-ion batteries, Electrochem Solid-State Lett 7(10) (2004) A369-A372. |