博碩士論文 106329603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.218.251.50
姓名 秋茬(Le Thi Thu Trang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 碳批覆之α-Si3N4, β-Si3N4, 以及β-Si3N4@Si負極應用於鋰電池之研究
(Carbon-coated α-Si3N4, β-Si3N4, and β-Si3N4@Si anodes for lithium-ion batteries)
相關論文
★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-3-31以後開放)
摘要(中) 近些年,由於Si材料具有非常高的理論電容值(Li3.75Si有3579 mAh/g,Li4.4Si具有4200 mAh/g),在地球上的資源非常豐富,經濟環保,又非常的安全等優點,其作為鋰電池的負極被越來越多的學者所關注。儘管有上述諸多優點,但是Si這個材料在鋰化以及去鋰化的過程中,體積會劇烈膨脹(膨脹300-400%),因此會導致其電容值快速下降,造成循環壽命的衰退。因此,學者們開始考慮使用Si3N4,因為其具有較為優秀的機械性能(比如:高強度,高硬度,高的斷裂韌性),可以承受在充放電循環過程中的體積變化以及機械應力。基於以上的原因,本研究將通過比較不同相的Si3N4 (α-Si3N4以及β-Si3N4)的結構、物理性質以及電化學性質,從而選擇出較為合適的相,再與Si通過球磨法進行混合,形成混合物。隨後,在混合物表面批覆一層非晶碳層,因為碳在鋰化以及去鋰化的過程中體積變化較小並且具有較高的導電性。經過實驗後,β-Si3N4試片在第一圈充放電中展現了92.7 mAh/g的可逆電容值,並且在高速下,可以保持維持率為32.4%,遠高於α- Si3N4所展示出來的84.4 mAh/g的電容值以及30.6%的維持率。而經過非晶碳層批覆之β-Si3N4/C在50 mA/g速度下,在循環100圈之後展示了92.9%的電容值維持率以及7.4 x 10-14鋰離子擴散系數(D-Li+)。隨後,本實驗將β-Si3N4與Si均勻混合後進行非晶碳層批覆,成功形成β-Si3N4@Si/C。其在500 mA/g下循環100圈之後展示了高達22%的電容值可逆性,而傳統的Si只有0.4%。-Si3N4@Si/C在高速5000 mA/g下也有高達14.1%的維持率以及較高的鋰離子擴散系數(D-Li+) 9.4 x 10-14。而之所以會有如此優秀的循環壽命以及高速下電容維持都要歸功於β-Si3N4優異的機械性能以及表面非晶碳層的批覆。
摘要(英) Utilizing silicon as an anode material in the rechargeable Li-ion batteries (LIBs) has received much attention during the past decades due to its superior theoretical capacity (3579 mAh/g for Li3.75Si or 4200 mAh/g for Li4.4Si), as well as its abundant natural resources, economic affordability, and safety. Nevertheless, Si undergoes severe volume expansion (300-400%) and mechanical vulnerability during lithiation/de-lithiation, causing fast capacity fading and poor cyclability. Then, stoichiometric silicon nitride (Si3N4) was taken into consideration since it has excellent mechanical properties (e.g., high strength, high hardness, and high fracture toughness) tolerating volume changes and mechanical pressure upon cycling. Based on the above properties, in this work, the structural, physical properties and electrochemical behavior of Si3N4 phases (α-Si3N4 and β-Si3N4) were compared to find the better phase, which was then combined with Si to produce the silicon nitride-based composite by the ball-milling method to establish a synergistic relationship. Furthermore, the exploitation of amorphous carbon protective coatings was approached, since carbon has small volume change during the electrochemical lithiation/de-lithiation processes and high electrical conductivity. As expected, the β-Si3N4 sample which obtained 92.7 mAh/g for the first reversible capacity, 32.4 % for the high-rate reversible capacity retention, was proved to be more efficient than the α-Si3N4 sample which attained 84.4 mAh/g and 30.6 %, for the first reversible capacity and high-rate reversible capacity retention, respectively. The β-Si3N4 sample with the amorphous carbon shell (β-Si3N4/C) exhibited 92.9 % of reversible capacity retention after 100 cycles at 50 mA/g and 7.4 x 10-14 of lithium diffusion coefficient (D-Li+), further demonstrating its potential capability. Subsequently, the β-Si3N4@Si composite and the β-Si3N4@Si composite with the amorphous carbon shell (β-Si3N4@Si/C) were successfully synthesized and evaluated. Moreover, the amorphous carbon-coated Si sample was also compared in this study. After 100 cycles at 500 mA/g, the β-Si3N4@Si/C composite showed the highest reversible capacity retention of 22.0 %, whereas for Si only 0.4 % initial capacity was retained. The β-Si3N4@Si/C composite also demonstrated its better high-rate performance with 14.1 % of capacity retention at 5000 mA/g and its much higher ion-diffusion acceleration with 9.4 x 10-14 of D-Li+. The enhanced cyclability and high-rate performance of silicon-based anodes owe to the high mechanical durability and excellent adhesive properties of β-Si3N4 along with the protective function of the amorphous carbon.
關鍵字(中) ★ α-Si3N4
★ β-Si3N4
★ β-Si3N4@Si
關鍵字(英) ★ α-Si3N4
★ β-Si3N4
★ β-Si3N4@Si
論文目次 LETTER OF AUTHORIZATION FOR ELECTRONIC THESES AND DISSERTATIONS i
APPLICATION FOR DELAYED PUBLIC RELEASE OF THESIS/DISSERTATION ii
ADVISOR′S RECOMMENDATION LETTER iii
VERIFICATION LETTER FROM THE ORAL EXAMINATION COMMITTEE iv
CHINESE ABSTRACT v
ENGLISH ABSTRACT vi
ACKNOWLEDGMENT vii
LIST of CONTENTS viii
LIST of FIGURES xii
LIST of TABLES xv
LIST of ACRONYMS xvi
CHAPTER 1. INTRODUCTION 1
1.1. Lithium-ion batteries (LIBs) 1
1.2. Motivation for research 2
1.3. Research objectives 4
CHAPTER 2. LITTERATURE REVIEWS 5
2.1. The basic of lithium-ion rechargeable batteries 5
2.2. Silicon anode materials for lithium-ion rechargeable batteries 7
2.2.1. Silicon properties 7
2.2.2. Working mechanism 7
2.2.3. Challenges 8
2.3. Silicon nitride properties 9
2.3.1. Crystal structure 9
2.3.2. Mechanical properties 11
2.3.3. Electronic structure 12
2.3.4. Lattice diffusion and defect chemistry 12
2.4. Silicon nitride conversion reaction in LiBs 12
2.5. Summary of LIB applications using silicon nitride materials 14
CHAPTER 3. EXPERIMENTAL 18
3.1. Materials 18
3.2. Preparation of anode materials 18
3.2.1. Preparation of -Si3N4@Si composite 18
3.2.2. Preparation of amorphous carbon-coated materials 18
3.3. Preparation of electrolyte 19
3.4. Pre-assembly 19
3.4.1. Slurry preparation 19
3.4.2. Electrode coating 19
3.4.3. Electrode punching and drying 19
3.5. Coin cell assembly 19
3.6. Materials characterization 19
3.6.1. X-ray Diffractometer (XRD) 19
3.6.2. Raman Spectroscopy 20
3.6.3. Scanning Electron Microscopy/ Energy Dispersive X-Ray Spectroscopy (SEM/EDS) 20
3.6.4. Thermo-Gravimetric Analyzer (TGA) 20
3.6.5. Dynamic Light Scattering (DLS) 20
3.7. Electrochemical performance test 21
3.8. Research flowcharts and scheme 22
3.9. Scheme of the thin film production process 24
CHAPTER 4. RESULTS and DISCUSSIONS 26
4.1. A comparison of α and β phases of silicon nitride 26
4.1.1. Structural results – XRD 26
4.1.2. Raman spectroscopy 27
4.1.3. Thermal stability and carbon content – TGA 30
4.1.4. Morphological results – SEM 31
4.1.5. Particle size - DLS 33
4.1.6. Cyclic voltammetry (CV) studies 34
4.1.7. Charge-discharge studies 35
4.1.8. High-rate electrochemical performance 38
4.1.9. Electrochemical cycling stability 41
4.1.10. Electrochemical impedance spectroscopy (EIS) test and Li-diffusion coefficient 44
4.2. A comparison between composites (pristine Si, Si/C, β-Si3N4@Si, Si/C, and β-Si3N4@Si/C composites) 47
4.2.1. Structural results - XRD 47
4.2.2. Raman spectroscopy 48
4.2.3. Thermal stability and carbon content - TGA 50
4.2.4. Morphological results - SEM 51
4.2.5. SEM and EDS analysis of the β-Si3N4@Si composite 53
4.2.6. Particle size – DLS 56
4.2.7. Charge-discharge studies 57
4.2.1. High-rate electrochemical performance 60
4.2.2. Electrochemical cycling stability 63
4.2.3. Electrochemical impedance spectroscopy (EIS) test and Li-diffusion coefficient 66
4.3. Further study of β-Si3N4 capability and behavior after cycling 69
4.3.1. Adhesive effect 69
4.3.2. Structural results-XRD 71
4.4. Summary table of electrochemical results 72
CHAPTER 5. CONCLUSION 74
CHAPTER 6. FUTURE WORKS 76
REFERENCES 77
參考文獻 [1] J.-K. Park, Principles and Applications of Lithium Secondary Batteries, Wiley-VCH (2012).
[2] D. Linden, Thomas B. Reddy (editor), Handbook of Batteries, McGraw-Hill Professional, 3rd Edition, Chapters.
[3] G.E. Blomgren, The Development and Future of Lithium Ion Batteries, J Electrochem Soc 164(1) (2016) A5019-A5025.
[4] Lithium-Ion Battery Market Overview, Variant market research.
[5] A. Bilich, K. Langham, R. Geyer, L. Goyal, J. Hansen, A. Krishnan, J. Bergesen, P. Sinha, Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities, Environ Sci Technol 51(2) (2017) 1043-1052.
[6] M.A. Pellow, C.J.M. Emmott, C.J. Barnhart, S.M. Benson, Hydrogen or batteries for grid storage? A net energy analysis, Energy Environ Sci 8(7) (2015) 1938-1952.
[7] M. Arbabzadeh, J.X. Johnson, G.A. Keoleian, P.G. Rasmussen, L.T. Thompson, Twelve Principles for Green Energy Storage in Grid Applications, Environ Sci Technol 50(2) (2016) 1046-1055.
[8] B.V. Ratnakumar, M.C. Smart, A. Kindler, H. Frank, R. Ewell, S. Surampudi, Lithium batteries for aerospace applications: 2003 Mars Exploration Rover, J Power Sources 119-121 (2003) 906-910.
[9] D. Larcher, J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat Chem 7(1) (2015) 19-29.
[10] J.B. Goodenough, K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective, J Am Chem Soc 135(4) (2013) 1167-1176.
[11] Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, J Power Sources 100(1) (2001) 101-106.
[12] R. Zhang, Y. Du, D. Li, D. Shen, J. Yang, Z. Guo, H.K. Liu, A.A. Elzatahry, D. Zhao, Highly reversible and large lithium storage in mesoporous si/c nanocomposite anodes with silicon nanoparticles embedded in a carbon framework, Adv Mater 26(39) (2014) 6749-55.
[13] Y. Mekonnen, A. Sundararajan, A.I. Sarwat, A review of cathode and anode materials for lithium-ion batteries, SoutheastCon 2016, IEEE, 2016, pp. 1-6.
[14] A. Jain, B.J. Paul, S. Kim, V. Jain, J. Kim, A.K. Rai, Two-dimensional porous nanodisks of NiCo2O4 as anode material for high-performance rechargeable lithium-ion battery, J Alloys Compd 772 (2019) 72-79.
[15] J. Wang, T. Xu, X. Huang, H. Li, T. Ma, Recent progress of silicon composites as anode materials for secondary batteries, RSC Advances 6(90) (2016) 87778-87790.
[16] J. Yang, X.Y. Zhou, J. Li, Y.L. Zou, J.J. Tang, Study of nano-porous hard carbons as anode materials for lithium ion batteries, Mater Chem Phys 135(2-3) (2012) 445-450.
[17] C.A. Bridges, X.-G. Sun, J. Zhao, M.P. Paranthaman, S. Dai, In Situ Observation of Solid Electrolyte Interphase Formation in Ordered Mesoporous Hard Carbon by Small-Angle Neutron Scattering, The Journal of Physical Chemistry C 116(14) (2012) 7701-7711.
[18] V. Meunier, J. Kephart, C. Roland, J. Bernholc, Ab Initio Investigations of Lithium Diffusion in Carbon Nanotube Systems, Phys Rev Lett 88(7) (2002) 075506.
[19] C.M. Schauerman, M.J. Ganter, G. Gaustad, C.W. Babbitt, R.P. Raffaelle, B.J. Landi, Recycling single-wall carbon nanotube anodes from lithium ion batteries, J Mater Chem 22(24) (2012) 12008-12015.
[20] K. Nishidate, M. Hasegawa, Energetics of lithium ion adsorption on defective carbon nanotubes, PhRvB 71(24) (2005) 245418.
[21] J. Zhao, A. Buldum, J. Han, J.P. Lu, First-principles study of Li-intercalated carbon nanotube ropes, Phys Rev Lett 85(8) (2000) 1706-1709.
[22] H. Fujimoto, K. Tokumitsu, A. Mabuchi, N. Chinnasamy, T. Kasuh, The anode performance of the hard carbon for the lithium ion battery derived from the oxygen-containing aromatic precursors, J Power Sources 195(21) (2010) 7452-7456.
[23] N.G. Rudawski, B.R. Yates, M.R. Holzworth, K.S. Jones, R.G. Elliman, A.A. Volinsky, Ion beam-mixed Ge electrodes for high capacity Li rechargeable batteries, J Power Sources 223 (2013) 336-340.
[24] A.M. Chockla, K.C. Klavetter, C.B. Mullins, B.A. Korgel, Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries, ACS Applied Materials & Interfaces 4(9) (2012) 4658-4664.
[25] J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent Advances in Metal Oxide-based Electrode Architecture Design for Electrochemical Energy Storage, Adv Mater 24(38) (2012) 5166-5180.
[26] Z. Wang, L. Zhou, X.W. Lou, Metal Oxide Hollow Nanostructures for Lithium-ion Batteries, Adv Mater 24(14) (2012) 1903-1911.
[27] P.P. Prosini, M. Carewska, S. Loreti, C. Minarini, S. Passerini, Lithium iron oxide as alternative anode for li-ion batteries, Int J Inorg Mater 2(4) (2000) 365-370.
[28] L. Ji, Z. Lin, M. Alcoutlabi, X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy Environ Sci 4(8) (2011) 2682-2699.
[29] J. Xu, Q. Zhang, Y.-T. Cheng, High capacity silicon electrodes with nafion as binders for lithium-ion batteries, J Electrochem Soc 163(3) (2016) A401-A405.
[30] R. Maddipatla, C. Loka, W. Choi, K.-S. Lee, Nanocomposite of Si/C Anode Material Prepared by Hybrid Process of High-Energy Mechanical Milling and Carbonization for Li-Ion Secondary Batteries, Appl Sci 8(11) (2018) 2140.
[31] M.J. Loveridge, M.J. Lain, I.D. Johnson, A. Roberts, S.D. Beattie, R. Dashwood, J.A. Darr, R. Bhagat, Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes, Sci Rep 6 (2016) 37787.
[32] C.R. Cabrera, F. Miranda, Advanced nanomaterials for aerospace applications, Pan Stanford2014.
[33] W. An, B. Gao, S. Mei, B. Xiang, J. Fu, L. Wang, Q. Zhang, P.K. Chu, K. Huo, Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes, Nature communications 10(1) (2019) 1447.
[34] X. Song, X. Wang, Z. Sun, P. Zhang, L. Gao, Recent Developments in Silicon Anode Materials for High Performance Lithium-Ion Batteries, Journal of Material Matters 8 (2016).
[35] D. Liao, X. Kuang, J. Xiang, X. Wang, A Silicon Anode Material with Layered Structure for the Lithium-ion Battery, Journal of Physics: Conference Series, IOP Publishing, 2018, p. 012024.
[36] J. Sakabe, N. Ohta, T. Ohnishi, K. Mitsuishi, K. Takada, Porous amorphous silicon film anodes for high-capacity and stable all-solid-state lithium batteries, Commun Chem 1(1) (2018) 24.
[37] R. Dash, S. Pannala, Theoretical limits of energy density in silicon-carbon composite anode based lithium ion batteries, Sci Rep 6 (2016) 27449.
[38] S. Sekar, A.T. Aqueel Ahmed, A.I. Inamdar, Y. Lee, H. Im, D.Y. Kim, S. Lee, Activated Carbon-Decorated Spherical Silicon Nanocrystal Composites Synchronously-Derived from Rice Husks for Anodic Source of Lithium-Ion Battery, Nanomaterials 9(7) (2019) 1055.
[39] S.H. Ng, J. Wang, D. Wexler, S.Y. Chew, H.K. Liu, Amorphous Carbon-Coated Silicon Nanocomposites:  A Low-Temperature Synthesis via Spray Pyrolysis and Their Application as High-Capacity Anodes for Lithium-Ion Batteries, The Journal of Physical Chemistry C 111(29) (2007) 11131-11138.
[40] H. Kim, M. Seo, M.H. Park, J. Cho, A critical size of silicon nano‐anodes for lithium rechargeable batteries, Angew Chem Int Ed 49(12) (2010) 2146-2149.
[41] A. Veluchamy, C.-H. Doh, Silicon Based Composite Anode for Lithium Ion Battery, INTECH2011.
[42] N. Dimov, Y. Xia, M. Yoshio, Practical silicon-based composite anodes for lithium-ion batteries: fundamental and technological features, J Power Sources 171(2) (2007) 886-893.
[43] W. Wang, M.K. Datta, P.N. Kumta, Silicon-based composite anodes for Li-ion rechargeable batteries, J Mater Chem 17(30) (2007) 3229-3237.
[44] J. Guo, X. Chen, C. Wang, Carbon scaffold structured silicon anodes for lithium-ion batteries, J Mater Chem 20(24) (2010) 5035-5040.
[45] H. Zhang, P.V. Braun, Three-dimensional metal scaffold supported bicontinuous silicon battery anodes, Nano Lett 12(6) (2012) 2778-2783.
[46] Z. Xiao, C. Lei, C. Yu, X. Chen, Z. Zhu, H. Jiang, F. Wei, Si@ Si3N4@ C composite with egg-like structure as high-performance anode material for lithium ion batteries, Energy Stor Mater (2019).
[47] J. Yang, R.C. De Guzman, S.O. Salley, K.S. Ng, B.-H. Chen, M.M.-C. Cheng, Plasma enhanced chemical vapor deposition silicon nitride for a high-performance lithium ion battery anode, J Power Sources 269 (2014) 520-525.
[48] R.C. de Guzman, J. Yang, M.M.-C. Cheng, S.O. Salley, K.S. Ng, High capacity silicon nitride-based composite anodes for lithium ion batteries, Journal of Materials Chemistry A 2(35) (2014) 14577-14584.
[49] C.-Y. Wu, C.-C. Chang, J.-G. Duh, Silicon nitride coated silicon thin film on three dimensions current collector for lithium ion battery anode, J Power Sources 325 (2016) 64-70.
[50] A. Ulvestad, J.P. Mæhlen, M. Kirkengen, Silicon nitride as anode material for Li-ion batteries: Understanding the SiNx conversion reaction, J Power Sources 399 (2018) 414-421.
[51] A. Ulvestad, H.F. Andersen, I.J. Jensen, T.T. Mongstad, J.P. Mæhlen, Ø. Prytz, M. Kirkengen, Substoichiometric Silicon Nitride–An Anode Material for Li-ion Batteries Promising High Stability and High Capacity, Sci Rep 8(1) (2018) 8634.
[52] X. Zhang, G. Pan, G. Li, J. Qu, X. Gao, Si–Si3N4 composites as anode materials for lithium ion batteries, Solid State Ion 178(15-18) (2007) 1107-1112.
[53] S.-J. Kim, M.-C. Kim, S.-B. Han, G.-H. Lee, H.-S. Choe, D.-H. Kwak, S.-Y. Choi, B.-G. Son, M.-S. Shin, K.-W. Park, 3D flexible Si based-composite (Si@ Si3N4)/CNF electrode with enhanced cyclability and high rate capability for lithium-ion batteries, Nano Energy 27 (2016) 545-553.
[54] J. Guan, L. Cheng, M. Li, Microstructure and Mechanical Properties of Si3N4-Fe3Si Composites Prepared by Gas-Pressure Sintering, Materials 11(7) (2018) 1206.
[55] C.C. Guedes-Silva, A.C.D. Rodas, A.C. Silva, C. Ribeiro, F.M.d.S. Carvalho, O.Z. Higa, T.d.S. Ferreira, Microstructure, Mechanical Properties and in vitro Biological Behavior of Silicon Nitride Ceramics, Materials Research 21(6) (2018).
[56] M. Mazzocchi, A. Bellosi, On the possibility of silicon nitride as a ceramic for structural orthopaedic implants. Part I: processing, microstructure, mechanical properties, cytotoxicity, J Mater Sci Mater Med 19(8) (2008) 2881-2887.
[57] H. Schulz, K. Thiemann, Defect structure of the ionic conductor lithium nitride (Li3N), Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 35(2) (1979) 309-314.
[58] A. Rabenau, Lithium nitride, Li 3 N, an unusual ionic conductor, Festkörperprobleme 18, Springer1978, pp. 77-108.
[59] M. Martı́n-Gil, M. Rabanal, A. Varez, A. Kuhn, F. Garcı́a-Alvarado, Mechanical grinding of Si3N4 to be used as an electrode in lithium batteries, Mater Lett 57(20) (2003) 3063-3069.
[60] T. Lapp, S. Skaarup, A. Hooper, Ionic conductivity of pure and doped Li3N, Solid State Ion 11(2) (1983) 97-103.
[61] N. Kalaiselvi, Synthesis and electrochemical characterization of novel category Si3-xMxN4 (M= Co, Ni, Fe) anodes for rechargeable lithium batteries, Int J Electrochem Sci 2 (2007) 478-487.
[62] H. Li, H. Zhou, Enhancing the performances of Li-ion batteries by carbon-coating: present and future, Chem Commun 48(9) (2012) 1201-1217.
[63] T. Kim, W. Song, D.-Y. Son, L.K. Ono, Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, Journal of Materials Chemistry A 7(7) (2019) 2942-2964.
[64] G. Wysocki, R. Denk, K. Piglmayer, N. Arnold, D. Bäuerle, Single-step fabrication of silicon-cone arrays, Appl Phys Lett 82(5) (2003) 692-693.
[65] M. Hanfland, U. Schwarz, K. Syassen, K. Takemura, Crystal structure of the high-pressure phase silicon VI, Phys Rev Lett 82(6) (1999) 1197.
[66] K.E. Petersen, Silicon as a mechanical material, Proc IEEE 70(5) (1982) 420-457.
[67] T. Sumigawa, S. Ashida, S. Tanaka, K. Sanada, T. Kitamura, Fracture toughness of silicon in nanometer-scale singular stress field, Eng Fract Mech 150 (2015) 161-167.
[68] H.M.N.U.H. KHAN, S. Shi, D. Jiang, Y. Tan, Evaluation on electrical resistivity of silicon materials after electron beam melting, Bull Mater Sci 38(5) (2015) 1429-1433.
[69] F. Ozanam, M. Rosso, Silicon as anode material for Li-ion batteries, Materials Science and Engineering: B 213 (2016) 2-11.
[70] L. Yu, J. Liu, S. He, C. Huang, L. Gan, Z. Gong, M. Long, A novel high-performance 3D polymer binder for silicon anode in lithium-ion batteries, J Phys Chem Solids 135 (2019) 109113.
[71] T. Zhao, D. Zhu, W. Li, A. Li, J. Zhang, Novel design and synthesis of carbon-coated porous silicon particles as high-performance lithium-ion battery anodes, J Power Sources 439 (2019) 227027.
[72] M. Ashuri, Q. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter, Nanoscale 8(1) (2016) 74-103.
[73] D. Ma, Z. Cao, A. Hu, Si-Based Anode Materials for Li-Ion Batteries: A Mini Review, Nano-micro letters 6(4) (2014) 347-358.
[74] A. Franco Gonzalez, N.-H. Yang, R.-S. Liu, Silicon anode design for lithium-ion batteries: progress and perspectives, The Journal of Physical Chemistry C 121(50) (2017) 27775-27787.
[75] F.L. Riley, Silicon nitride and related materials, J Am Ceram Soc 83(2) (2000) 245-265.
[76] J. Robertson, Electronic structure of silicon nitride, Philos Mag B 63(1) (1991) 47-77.
[77] L. Weiss, T. Engelhardt, On Nitrogen Compounds of Silicon, Z anorg Chem 65 (1910) 38-104.
[78] E. Turkdogan, P.M. Bills, V.A. Tippett, Silicon nitrides: Some physico‐chemical properties, Journal of Applied Chemistry 8(5) (1958) 296-302.
[79] G. Ziegler, J. Heinrich, G. Wötting, Relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride, JMatS 22(9) (1987) 3041-3086.
[80] Y.-N. Xu, W. Ching, Electronic structure and optical properties of α and β phases of silicon nitride, silicon oxynitride, and with comparison to silicon dioxide, PhRvB 51(24) (1995) 17379.
[81] S.-Y. Ren, W. Ching, Electronic structures of β-and α-silicon nitride, PhRvB 23(10) (1981) 5454.
[82] H.J. Kleebe, G. Pezzotti, G. Ziegler, Microstructure and fracture toughness of Si3N4 ceramics: combined roles of grain morphology and secondary phase chemistry, J Am Ceram Soc 82(7) (1999) 1857-1867.
[83] Y. Tajima, K. Urashima, Improvement of strength and toughness of silicon nitride ceramics, Tailoring of Mechanical Properties of Si3N4 Ceramics, Springer1994, pp. 101-109.
[84] S. Ruddlesden, P. Popper, On the crystal structure of the nitrides of silicon and germanium, Acta Crystallogr 11(7) (1958) 465-468.
[85] F. Lange, Fracture Toughness of Si3N4 as a Function of the Initial α‐phase Content, J Am Ceram Soc 62(7‐8) (1979) 428-430.
[86] P. Becher, H. Lin, S. Hwang, M. Hoffmann, I.-W. Chen, The influence of microstructure on the mechanical behavior of silicon nitride ceramics, MRS Online Proceedings Library Archive 287 (1992).
[87] M. Hoffmann, Analysis of microstructural development and mechanical properties of Si 3 N 4 ceramics, Tailoring of mechanical properties of Si3N4 ceramics, Springer1994, pp. 59-72.
[88] X. Zhu, Y. Sakka, Textured silicon nitride: processing and anisotropic properties, Sci Technol Adv Mater 9(3) (2008) 033001.
[89] K. Kijima, S.i. Shirasaki, Nitrogen self‐diffusion in silicon nitride, The Journal of Chemical Physics 65(7) (1976) 2668-2671.
[90] E. Butler, Observations of dislocations in β-silicon nitride, Philos Mag 24(190) (1971) 829-834.
[91] D. Ahn, C. Kim, J.-G. Lee, B. Park, The effect of nitrogen on the cycling performance in thin-film Si1−xNx anode, J Solid State Chem 181(9) (2008) 2139-2142.
[92] N. Suzuki, R.B. Cervera, T. Ohnishi, K. Takada, Silicon nitride thin film electrode for lithium-ion batteries, J Power Sources 231 (2013) 186-189.
[93] A. Ulvestad, H.F. Andersen, J.P. Mæhlen, Ø. Prytz, M. Kirkengen, Long-term cyclability of substoichiometric silicon nitride thin film anodes for Li-ion batteries, Sci Rep 7(1) (2017) 13315.
[94] X.N. Zhang, G.L. Pan, G.R. Li, J.Q. Qu, X.P. Gao, Si–Si3N4 composites as anode materials for lithium ion batteries, Solid State Ion 178(15) (2007) 1107-1112.
[95] X.D. Huang, X.F. Gan, F. Zhang, Q.A. Huang, J.Z. Yang, Improved electrochemical performance of silicon nitride film by hydrogen incorporation for lithium-ion battery anode, Electrochim Acta 268 (2018) 241-247.
[96] L.G. Cançado, A. Jorio, E.M. Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.d.O. Moutinho, A. Lombardo, T. Kulmala, A.C. Ferrari, Quantifying defects in graphene via Raman spectroscopy at different excitation energies, Nano Lett 11(8) (2011) 3190-3196.
[97] M. Ahmad, J. Zhao, F. Zhang, C. Pan, J. Zhu, One-step synthesis route of the aligned and non-aligned single crystalline α-Si 3 N 4 nanowires, Science in China Series E: Technological Sciences 52(1) (2009) 1.
[98] M. Ahmad, J. Zhao, C. Pan, J. Zhu, Ordered arrays of high-quality single-crystalline α-Si3N4 nanowires: Synthesis, properties and applications, J Cryst Growth 311(20) (2009) 4486-4490.
[99] H.Y. Kim, J. Park, H. Yang, Synthesis of silicon nitride nanowires directly from the silicon substrates, Chem Phys Lett 372(1-2) (2003) 269-274.
[100] L.-W. Yin, Y. Bando, Y.-C. Zhu, Y.-B. Li, Synthesis, structure, and photoluminescence of very thin and wide alpha silicon nitride (α-Si 3 N 4) single-crystalline nanobelts, Appl Phys Lett 83(17) (2003) 3584-3586.
[101] J. Zhang, Y. Chen, T. Guo, Z. Lin, T. Wang, Sub-band-gap photoconductivity of individual α-Si3N4 nanowires, Nanotechnology 18(32) (2007) 325603.
[102] C. Vakifahmetoglu, E. Pippel, J. Woltersdorf, P. Colombo, Growth of one‐dimensional nanostructures in porous polymer‐derived ceramics by catalyst‐assisted pyrolysis. Part I: iron catalyst, J Am Ceram Soc 93(4) (2010) 959-968.
[103] I.-M. Low, Ceramic-matrix composites: microstructure, properties and applications, Woodhead Publishing2006.
[104] X. Deng, X. Li, B. Zhu, P. Chen, In-situ synthesis mechanism of plate-shaped β-Sialon and its effect on Al2O3–C refractory properties, Ceram Int 41(10) (2015) 14376-14382.
[105] Y.-X. Qi, M.-S. Li, C.-G. Wang, Y.-J. Bai, B. Zhu, Y.-X. Wang, Low-temperature preparation of silicon nitride via chemical metathesis route, Mater Lett 58(26) (2004) 3345-3347.
[106] F. Wang, X.F. Qin, G.Q. Jin, Y.Y. Wang, X.Y. Guo, Synthesis and characterization of Si3N4 thin nanobelts via direct nitridation of Si powders, Physica E: Low-dimensional Systems and Nanostructures 41(1) (2008) 120-123.
[107] F. Wang, X. Qin, L. Yang, Y. Meng, L. Sun, Synthesis and photoluminescence of Si3N4 nanowires from La/SiO2 composites and Si powders, Ceram Int 41(1) (2015) 1505-1510.
[108] A. Guo, M. Roso, M. Modesti, J. Liu, P. Colombo, Hierarchically structured polymer-derived ceramic fibers by electrospinning and catalyst-assisted pyrolysis, J Eur Ceram Soc 34(2) (2014) 549-554.
[109] O. Sahin, H. Güder, O. Uzun, E. Şahin, M. Sopicka-Lizer, H. Göçmez, E. Artunc, Preparation of Fine-Grained Silicon-Nitride Ceramics and their Characterization by Depth-Sensing Indentation Tests, Acta Physica Polonica, A 128 (2015).
[110] A. Dychalska, P. Popielarski, W. Franków, K. Fabisiak, K. Paprocki, M. Szybowicz, Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy, Materials Science-Poland 33(4) (2015) 799-805.
[111] C. Casiraghi, A. Ferrari, J. Robertson, Raman spectroscopy of hydrogenated amorphous carbons, PhRvB 72(8) (2005) 085401.
[112] M. Obrovac, L. Krause, Reversible cycling of crystalline silicon powder, J Electrochem Soc 154(2) (2007) A103-A108.
[113] M. Obrovac, L. Christensen, D.B. Le, J.R. Dahn, Alloy design for lithium-ion battery anodes, J Electrochem Soc 154(9) (2007) A849-A855.
[114] X. Wu, Z. Wang, L. Chen, X. Huang, Ag-enhanced SEI formation on Si particles for lithium batteries, Electrochem Commun 5(11) (2003) 935-939.
[115] Z. Wen, K. Wang, L. Chen, J. Xie, A new ternary composite lithium silicon nitride as anode material for lithium ion batteries, Electrochem Commun 8(8) (2006) 1349-1352.
[116] F. Luo, B. Liu, J. Zheng, G. Chu, K. Zhong, H. Li, X. Huang, L. Chen, Nano-silicon/carbon composite anode materials towards practical application for next generation Li-ion batteries, J Electrochem Soc 162(14) (2015) A2509-A2528.
[117] B.T. Hang, T. Ohnishi, M. Osada, X. Xu, K. Takada, T. Sasaki, Lithium silicon sulfide as an anode material in all-solid-state lithium batteries, J Power Sources 195(10) (2010) 3323-3327.
[118] X. Wen, D. Zhang, T. Yan, J. Zhang, L. Shi, Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization, Journal of Materials Chemistry A 1(39) (2013) 12334-12344.
[119] H. Wang, L. Shi, T. Yan, J. Zhang, Q. Zhong, D. Zhang, Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization, Journal of Materials Chemistry A 2(13) (2014) 4739-4750.
[120] J. Wu, Y. Cao, H. Zhao, J. Mao, Z. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries, Carbon Energy 1(1) (2019) 57-76.
[121] Y. Xu, G. Yin, Y. Ma, P. Zuo, X. Cheng, Nanosized core/shell silicon@ carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source, J Mater Chem 20(16) (2010) 3216-3220.
[122] Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, O. Yamamoto, A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries, J Power Sources 195(6) (2010) 1720-1725.
[123] J. Guo, A. Sun, X. Chen, C. Wang, A. Manivannan, Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy, Electrochim Acta 56(11) (2011) 3981-3987.
[124] Y. Cheng, J. Huang, J. Li, Z. Xu, L. Cao, H. Ouyang, J. Yan, H. Qi, SnO2/super P nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performance, J Alloys Compd 658 (2016) 234-240.
[125] L.-F. Cui, Y. Yang, C.-M. Hsu, Y. Cui, Carbon−Silicon Core−Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries, Nano Lett 9(9) (2009) 3370-3374.
[126] W.S. Yoo, H. Harima, M. Yoshimoto, Polarized Raman signals from Si wafers: dependence of in-plane incident orientation of probing light, ECS J Solid State Sci Technol 4(9) (2015) P356-P363.
[127] N. Wada, S. Solin, J. Wong, S. Prochazka, Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4, J Non-Cryst Solids 43(1) (1981) 7-15.
[128] Y. Fu, J. Li, C. Cao, The superelastic mechanism of Si 3 N 4 microsprings using micro-Raman spectroscopy, PCCP 16(28) (2014) 14808-14812.
[129] T. Kuzuba, K. Kijima, Y. Bando, Raman‐active modes of alpha silicon nitride, The Journal of Chemical Physics 69(1) (1978) 40-42.
[130] K. Honda, S. Yokoyama, S.-i. Tanaka, Assignment of the Raman active vibration modes of β-Si 3 N 4 using micro-Raman scattering, J Appl Phys 85(10) (1999) 7380-7384.
[131] S. Yin, D. Zhao, Q. Ji, Y. Xia, S. Xia, X. Wang, M. Wang, J. Ban, Y. Zhang, E. Metwalli, X. Wang, Y. Xiao, X. Zuo, S. Xie, K. Fang, S. Liang, L. Zheng, B. Qiu, Z. Yang, Y. Lin, L. Chen, C. Wang, Z. Liu, J. Zhu, P. Müller-Buschbaum, Y.-J. Cheng, Si/Ag/C Nanohybrids with in Situ Incorporation of Super-Small Silver Nanoparticles: Tiny Amount, Huge Impact, ACS Nano 12(1) (2018) 861-875.
[132] J. Li, J. Dahn, An in situ X-ray diffraction study of the reaction of Li with crystalline Si, J Electrochem Soc 154(3) (2007) A156-A161.
[133] C.J. Wen, R.A. Huggins, Chemical diffusion in intermediate phases in the lithium-silicon system, J Solid State Chem 37(3) (1981) 271-278.
[134] A. Netz, R.A. Huggins, W. Weppner, The formation and properties of amorphous silicon as negative electrode reactant in lithium systems, J Power Sources 119 (2003) 95-100.
[135] Y. Fujisaki, T. Kijima, H. Ishiwara, High-performance metal–ferroelectric–insulator–semiconductor structures with a damage-free and hydrogen-free silicon–nitride buffer layer, Appl Phys Lett 78(9) (2001) 1285-1287.
[136] S.D. Beattie, M. Loveridge, M.J. Lain, S. Ferrari, B.J. Polzin, R. Bhagat, R. Dashwood, Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies, J Power Sources 302 (2016) 426-430.
[137] A. Eftekhari, Low voltage anode materials for lithium-ion batteries, Energy Stor Mater 7 (2017) 157-180.
[138] C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Mater Today 19(2) (2016) 109-123.
[139] H.-S. Kim, K.-Y. Chung, B.-W. Cho, Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries, Journal of the Korean Electrochemical Society 11(1) (2008) 37-41.
[140] Z. Yan, J. Guo, High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction, Nano Energy (2019).
[141] F. Dou, L. Shi, G. Chen, D. Zhang, Silicon/carbon composite anode materials for lithium-ion batteries, Electrochemical Energy Reviews 2(1) (2019) 149-198.
[142] W. Wang, Z. Favors, C. Li, C. Liu, R. Ye, C. Fu, K. Bozhilov, J. Guo, M. Ozkan, C.S. Ozkan, Silicon and Carbon Nanocomposite Spheres with Enhanced Electrochemical Performance for Full Cell Lithium Ion Batteries, Sci Rep 7 (2017) 44838-44838.
[143] X. Liu, X. Zhu, D. Pan, Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries, Royal Soc Open Sci 5(6) (2018) 172370-172370.
[144] Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, Y. Takeda, Silicon/carbon composites as anode materials for Li-ion batteries, Electrochem Solid-State Lett 7(10) (2004) A369-A372.
指導教授 李勝偉 張仍奎(Lee Sheng-Wei Chang Jeng-Kuei) 審核日期 2020-3-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明