博碩士論文 100488001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.148.144.139
姓名 黃保憲(Pao-Hsien Huang)  查詢紙本館藏   畢業系所 財務金融學系
論文名稱 衍生性商品與逆向抵押貸款之評價研究
(Two Essays on Valuation of Derivative Contracts and Reverse Mortgages)
相關論文
★ 人身保險業經營財富管理業務之探討★ 歐洲主權債信危機對台灣證券市場金融股的影響
★ 結構型商品之評價及分析-以匯率及股權連結型商品為例★ 多元通路行銷保險介紹與分析
★ TRF與DKO評價與客戶承做目的之分析★ 信用卡信用評分模型的建置與評等-以國內某銀行為例
★ 銀行財富管理行銷策略分析--以TF銀行與S銀行為例★ 金融科技應用之分析與探討
★ 企業併購之無形資產評價分析:以日月光併購矽品為例★ 一帶一路對中國股市影響之分析與探討
★ 三大法人進出與台灣股票短期報酬關係之研究★ 東協政治經濟發展介紹與分析
★ 逆向房屋抵押貸款之探討-以上海銀行契約為例★ 結構型商品之評價與分析 ―以多資產股權連結結構型商品與保息型匯率連結結構型商品為例
★ 台指選擇權隱含波動度價差之交易策略探討★ 結構型金融商品之評價與分析—以多資產股權連動債券與CMS利差連動債券為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文是由兩篇關於衍生性商品與逆向抵押貸款的評價研究所構成。

在第一篇研究中,針對台灣現行以房養老契約(又稱為不動產逆向抵押貸款)成效不彰的問題,本文提出評價模型用以計算公平保險費率,使政府若有意建立信用保證機制,為借款人提供信用保證時,向借款人收取保險費的評價參考。此外,本文採用市場資料進行模型參數的估計,並提供保險費率的試算結果。最後,本文呈現模型參數的敏感度分析,供信用保證機制做風險管理時使用。


在第二篇研究中,針對標的資產為自然現象(如:地震、颶風、野火…等)的多資產衍生性商品,本文在風險中立評價關係的架構下,透過多變數Gamma分配,建構一般化的多資產衍生性商品評價公式。此外,以常見的一籃子選擇權與價差選擇權做為數值範例,其數值結果顯示評價評價公式相當精確。對於無法導出評價公式的衍生性商品,本文提供多變數Gamma分配下,蒙地卡羅模擬法的評價方法,讓使用者可以尋求數值解作為評價的替代方案。
摘要(英) This study contains two essays on valuation of derivative contracts and reverse mortgages.

In Essay 1, the pricing model for Taiwan′s reverse mortgage contract (RMC) is proposed to improve ineffective promotion. If government authorities or financial institutions try to establish a third-party credit guarantee institution, the pricing model proposed in this paper may have its reference value for the subsequent studies. Moreover, the parameter estimation methods and the numerical examinations are also provided in this article. Furthermore, this article demonstrates the sensitivity analysis for the government authorities or financial institutions to manage the risk exposure of the third-party credit guarantee institution.

In Essay 2, under the general equilibrium risk-neutral valuation relationship framework, a multi-asset pricing model based on multivariate gamma distribution is proposed to capture the features of the data of environmental phenomena. This paper demonstrates two applications to price basket options and spread options. The numerical results show that the pricing model is sufficiently accurate. As for financial instruments that do not have closed-form pricing formulas, this paper further develops the Monte Carlo simulation method to manage their pricing.
關鍵字(中) ★ 台灣以房養老契約
★ 台灣老人長期照護問題
★ 公平保險費
★ 基於消費的評價方法
★ Gamma分配族
★ 風險中立評價關係
★ 一籃子選擇權
★ 價差選擇權
關鍵字(英) ★ Taiwan’s Reverse Mortgage Contracts
★ Taiwan’s Elder Long-Term Care Problem
★ Fair Insurance Premium
★ Consumption-Based Approach
★ Gamma Distribution Family
★ Risk-Neutral Valuation Relationship
★ Basket Options
★ Spread Options
論文目次 目 錄

中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 vi
表目錄 vii


研究一:台灣以房養老契約設計之改良與評價 1
1. 緒論 2
2. 文獻回顧 6
3. 模型設定、市場資料、模型參數 8
3.1 利率模型 8
3.1.1 CIR 利率模型 8
3.1.2 利率資料與利率模型參數估計結果 10
3.2 房價模型 11
3.2.1 房價模型 11
3.2.2 台灣房價資料與房價模型參數估計結果 12
3.3 死亡率模型 13
3.3.1 Lee-Carter死亡率模型 13
3.3.2 台灣死亡率資料與死亡率模型參數估計結果 14
4. 台灣以房養老契約評價模型 17
4.1 台灣現行以房養老契約之評價模型 18
4.1.1 給付方式之說明 18
4.1.2 利息之說明 19
4.1.3 總貸款餘額之說明 20
4.2 台灣現行以房養老契約:加入無追索權 20
4.3 台灣現行以房養老契約:加入無追索權與利息延後支付 22
4.4 台灣現行以房養老契約:加入無追索權且終身契約 23
4.5 台灣現行以房養老契約:加入無追索權、利息延後支付且終身契約 27
4.6 評價模型之限制 28
5. 數值分析 29
6. 信用保證機制之風險分析與管理 32
6.1 房屋價值波動度的變化 32
6.2 利率的變化 33
6.3 相關係數的變化 34
6.4 存活率的變化 35
6.5 房屋維護費用率的變化 37
7. 結論 38
參考文獻 40


研究二:Pricing Multi-Assets Financial Instruments within the Consumption-Based Approach 43
1. Introduction 44
2. The MVP Model 47
2.1 Review of the Equilibrium Pricing Model 47
2.2 Multivariate Gamma Distribution Family 49
2.3 Pricing Kernel and Asset-Specific Pricing Kernel 51
2.4 The MVP Model 53
3. Applications of the MVP Model 55
3.1 Pricing General Basket Options under the MVP Model 55
3.2 The Monte Carlo Simulation Method 59
4. Numerical Examples 63
4.1 The Basket Option 63
4.2 The Spread Option 64
5. Conclusion 64
Appendix A: Pricing Kernel 65
Appendix B: Asset-Specific Pricing Kernel 66
Appendix C: The Probability Density Function of the Risky Asset Associated with the Risk Preference Parameter γ 67
Appendix D: The First Three Moments of the Underlying Basket 68
Appendix E: The Approximate Pricing Formula of the General Basket Call Options, when b=1 69
Appendix F: The Approximate Pricing Formula of the General Basket Put Options, when b=1 70
Appendix G: The Approximate Pricing Formula of the General Basket Call Options, when b=-1 71
Appendix H: The Approximate Pricing Formula of the General Basket Put Options, when b=-1 72
參考文獻 73
參考文獻 研究一:台灣以房養老契約設計之改良與評價
[1] 李秉芳, 楊屯山, & 林哲群. (2011). 固定利率與指數型不動產逆向抵押貸款之比較分析. 住宅學報, 20(2), 27-46.
[2] 李永琮 & 羅玉皓. (2016). 反向房屋抵押貸款商品結構分析. 臺大管理論叢, 26(2), 139-172.
[3] 王儷玲, 王正偉, & 劉文彬. (2011). 臺灣實施反向房屋抵押貸款對提升退休所得之影響. 風險管理學報, 13(1), 25-48.
[4] Bardhan, A., Karapandža, R., & Urošević, B. (2006). Valuing mortgage insurance contracts in emerging market economies. The Journal of Real Estate Finance and Economics, 32(1), 9-20.
[5] Blake, D., & Burrows, W. (2001). Survivor bonds: helping to hedge mortality risk. Journal of Risk and Insurance, 68(2), 339-348.
[6] Blake, D., Boardman, T., & Cairns, A. (2014). Sharing longevity risk: Why governments should issue longevity bonds. North American Actuarial Journal, 18(1), 258-277.
[7] Chen, H., Cox, S. H., & Wang, S. S. (2010). Is the Home Equity Conversion Mortgage in the United States sustainable? Evidence from pricing mortgage insurance premiums and non-recourse provisions using the conditional Esscher transform. Insurance: Mathematics and Economics, 46(2), 371-384.
[8] Chinloy, P., & Megbolugbe, I. F. (1994). Reverse mortgages: contracting and crossover risk. Real Estate Economics, 22(2), 367-386.
[9] Cox, J., Ingersoll, J., & Ross, S. (1985). A Theory of the Term Structure of Interest Rates. Econometrica, 53(2), 385-407.
[10] Demary, M. (2010). The interplay between output, inflation, interest rates and house prices: international evidence. Journal of Property Research, 27(1), 1-17.
[11] Denuit, M., Devolder, P., & Goderniaux, A. C. (2007). Securitization of Longevity Risk: Pricing Survivor Bonds With Wang Transform in the Lee‐Carter Framework. Journal of Risk and Insurance, 74(1), 87-113.
[12] Dowd, K., Blake, D., Cairns, A. J., & Dawson, P. (2006). Survivor Swaps. Journal of Risk and Insurance, 73(1), 1-17.
[13] Hilliard, J. E., & Reis, J. (1998). Valuation of commodity futures and options under stochastic convenience yields, interest rates, and jump diffusions in the spot. Journal of Financial and Quantitative Analysis, 33(1), 61-86.
[14] Huang, H. C., Yue, J. C., & Yang, S. S. (2008). An empirical study of mortality models in Taiwan. Asia-Pacific Journal of Risk and Insurance, 3(1).
[15] Huang, H. C., Wang, C. W., & Miao, Y. C. (2011). Securitisation of crossover risk in reverse mortgages. The Geneva Papers on Risk and Insurance-Issues and Practice, 36(4), 622-647.
[16] Hull, J. C. (2012). Options, futures, and other derivatives, 8ed.
[17] Kau, J. B., Keenan, D. C., Muller, W. J., & Epperson, J. F. (1992). A generalized valuation model for fixed-rate residential mortgages. Journal of Money, Credit and Banking, 24(3), 279-299.
[18] Kau, J. B., Keenan, D. C., & Muller III, W. J. (1993). An option-based pricing model of private mortgage insurance. Journal of Risk and Insurance, 288-299.
[19] Kau, J. B., & Keenan, D. C. (1995). An overview of the option-theoretic pricing of mortgages. Journal of Housing Research, 217-244.
[20] Kau, J. B., Keenan, D. C., Muller, W. J., & Epperson, J. F. (1995). The valuation at origination of fixed-rate mortgages with default and prepayment. The Journal of Real Estate Finance and Economics, 11(1), 5-36.
[21] Kau, J. B., & Keenan, D. C. (1999). Catastrophic default and credit risk for lending institutions. Journal of Financial Services Research, 15(2), 87-102.
[22] Kladívko, K. (2007). Maximum likelihood estimation of the Cox-Ingersoll-Ross process: the Matlab implementation. Technical Computing Prague, 7.
[23] Lee, R. D., & Carter, L. R. (1992). Modeling and forecasting US mortality. Journal of the American Statistical Association, 87(419), 659-671.
[24] Lee, Y. T., Wang, C. W., & Huang, H. C. (2012). On the valuation of reverse mortgages with regular tenure payments. Insurance: Mathematics and Economics, 51(2), 430-441.
[25] Lin, Y., & Cox, S. H. (2005). Securitization of mortality risks in life annuities. Journal of risk and Insurance, 72(2), 227-252.
[26] Siu‐Hang Li, J., Hardy, M. R., & Tan, K. S. (2010). On Pricing and Hedging the No‐Negative‐Equity Guarantee in Equity Release Mechanisms. Journal of Risk and Insurance, 77(2), 499-522.
[27] Ma, S., Kim, G., & Lew, K. (2007). Estimating reverse mortgage insurer’s risk using stochastic models. In Asia-Pacific Risk and Insurance Association 2007 Annual Meeting.
[28] Margrabe, W. (1978). The value of an option to exchange one asset for another. The journal of finance, 33(1), 177-186.
[29] Moulton, S., Haurin, D. R., & Shi, W. (2015). An analysis of default risk in the Home Equity Conversion Mortgage (HECM) program. Journal of Urban Economics, 90, 17-34.
[30] Sherris, M., & Sun, D. (2010). Risk-based capital and pricing for reverse mortgages revisited.
[31] Shreve, S. (2004). Stochastic calculus for finance I: the binomial asset pricing model. Springer Science & Business Media.
[32] Svoboda, S. (2003). Interest rate modeling. Springer.
[33] Szymanoski, E. J. (1994). Risk and the home equity conversion mortgage. Real Estate Economics, 22(2), 347-366.
[34] Wang, L., Valdez, E. A., & Piggott, J. (2008). Securitization of longevity risk in reverse mortgages. North American Actuarial Journal, 12(4), 345-371.
[35] Yang, S. S. (2011). Securitisation and tranching longevity and house price risk for reverse mortgage products. The Geneva Papers on Risk and Insurance-Issues and Practice, 36(4), 648-674.
[36] Yang, T. T., Buist, H., & Megbolugbe, I. F. (1998). An analysis of the ex-ante probabilities of mortgage prepayment and default. Real Estate Economics, 26(4), 651-676.

研究二:Pricing Multi-Assets Financial Instruments within the Consumption-Based Approach
References
Beelders, O., & Colarossi D. (2004). Modeling Mortality Risk With Extreme Value Theory: The Case of Swiss Res Mortality-Indexed Bond. Global Association of Risk Professionals, 4, 26-30.

Borovkova, S., Permana, F. J., & Weide, H. V. D. (2007). A Closed-Form Approach to the Valuation and Hedging of Basket and Spread Options. Journal of Derivatives, 15, 8-24.

Boyle, P. P. (1977). Options: A monte carlo approach. Journal of financial economics, 4, 323-338.

Brennan, M. (1979). The pricing of contingent claims in discrete time models. Journal of Finance, 34, 53-58.

Camara, A. (2003). A generalization of the Brennan-Rubinstein approach for the pricing of derivatives. Journal of Finance, 58, 805-821.

Camara, A. (2005). Options prices sustained by risk-preferences. Journal of Business, 78, 1683-1708.

Cheng, H. W., Tzeng, C. F., Hsieh, M. H., & Tsai, J. T. (2014). Pricing mortality-linked securities with transformed gamma distribution. Academia Economic Papers, 42, 271-303.

Cox, A. & Ross, S. (1976). The valuation of options for alternative stochastic process. Journal of Financial Economics, 3, 145-166.

Cox, S. H., Lin, Y., & Wang, S. (2006). Multivariate exponential tilting and pricing implications for mortality securitization. Journal of Risk and Insurance, 73, 719-736.

Dingec, K. D., & Hormann, W. (2013). Control variates and conditional Monte Carlo for basket and Asian options. Insurance: Mathematics and Economics, 52, 421-434.

Falter, D., Schroter, K., Dung, N. V., Vorogushyn, S., Kreibich, H., Hundecha, Y., Apel, H., & Merz, B. (2015). Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. Journal of Hydrology, 524, 182-193.

Gerber, H. U., & Shiu, E. S. (1994). Martingale approach to pricing perpetual American options.

ASTIN Bulletin: The Journal of the IAA, 24, 195-220.

Hardle, W. & Cabrera, B. (2010). Calibrating CAT bonds for Mexican earthquakes. The Journal of Risk and Insurance, 77, 625-650.

Harrison, J. M. & Kreps, D. (1979). Martingales and arbitrage in multiperiod securities markets.

Journal of Economic Theory, 20, 381-408.

Harrison, J. M. & Pliska S. R. (1981). Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and their Applications, 11, 215-260.

Heston, S. (1993). Invisible parameters in option prices. Journal of Finance, 48, 933-947.

Kharin, V. V., Zwiers, F. W., Zhang, X., & Hegerl, G. C. (2007). Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. Journal of Climate, 20, 1419-1444.

Kreps, D. (1982). Multiperiod securities and the efficient allocation of risk: A comment on the Black-Scholes option pricing model. J. McCall edition, The economics of uncertainty and information, University of Chicago Press, Chicago.

Leccadito, A., Paletta, T., & Tunaru, R. (2016). Pricing and hedging basket options with exact moment matching. Insurance: Mathematics and Economics, 69, 59-69.

Lin, Y., Liu, S., & Yu, J. (2013). Pricing mortality securities with correlated mortality indexes.

Journal of Risk and Insurance, 80, 921-948.

Loukas, A., Vasiliades, L., Dalezios, N., & Domenikiotis, C. (2001). Rainfall-frequency mapping in Greece. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26, 669-674.

Mathai, A., & Moschopoulos, P. (1992). On a Multivariate Gamma. Journal of Multivariate Analysis, 39, 135-153.

Milevsky, M. A., & Posner, S. E. (1998). Asian options, the sum of lognormals, and the reciprocal gamma distribution. Journal of Financial and Quantitative Analysis, 33, 409-422.

Musiela, M., & Rutkowski, M. (2005). Martingale Methods in Financial Modelling. Springer, New York.

Pishgar-Komleh, S. H., Keyhani, A., & Sefeedpari, P. (2015). Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renewable and Sustainable Energy Reviews, 42, 313-322.

Rubinstein, M. (1976). The valuation of uncertain income streams & the pricing of options. Bell Journal of Economics and Management Science, 7, 407-425.

Rubinstein, R. Y. (1981). Simulation and the Monte Carlo Method. John Wiley & Sons, Inc., New York.

Savickas, R. (2002). A simple option pricing formula. Financial Review, 37, 207-226.

Schroder, M. (2004). Risk-Neutral parameters shifts and derivatives pricing in discrete time. Journal of Finance, 59, 2375-2401.

SenGupta, A., Kulkarni, H. V., & Hubale, U. D. (2015). Prediction intervals for environmental events based on Weibull distribution. Environmental and Ecological Statistics, 22, 87-104.

Sharda, V., & Das, P. (2005). Modelling weekly rainfall data for crop planning in a sub-humid climate of India. Agricultural Water Management, 76, 120-138.

Shreve, S. (2004). Stochastic calculus for nance II: Continuous-time models. New York: Springer.

Stapleton, R., & Subrahmanyam, M. (1984). The valuation of multivariate contingent claims in discrete time models. Journal of Finance, 39, 207-228.

Tsai, J. T., & Tzeng, L. Y. (2013). The Pricing of Mortality-Linked Contingent Claims: An Equilibrium Approach. ASTIN Bulletin: The Journal of the IAA, 43, 97-121.

Vitiello, L., & Poon, S. (2010). General equilibrium and preference free model for pricing options under transformed Gamma. Journal of Futures Markets, 30, 409-431.

Wu, Y. C., Liao, S. L., & Shyu, S. D. (2009). Closed-form valuations of basket options using a multivariate normal inverse Gaussian model. Insurance: Mathematics and Economics, 44, 95-102.

Xu, G., & Zheng, H. (2009). Approximate basket options valuation for a jump-diffusion model.

Insurance: Mathematics and Economics, 45, 188-194.

Xu, G., & Zheng, H. (2010). Basket options valuation for a local volatility jump diffusion model with the asymptotic expansion method. Insurance: Mathematics and Economics, 47, 415-422.

Yue, S., Ourada, T., & Bobee, B. (2001). A review of bivariate gamma distribution for hydrological application. Journal of Hydrology, 246, 1-18.

Yueh, M. L., Chiu, H. Y., & Tsai, S. H. (2016). Valuations of Mortality-Linked Structured Products.

The Journal of Derivatives, 24, 66-87.

Zhang, Y., & Dukic, V. (2013). Predicting multivariate insurance loss payments under the bayesian copula framework. Journal of Risk and Insurance, 80, 891-919.
指導教授 吳庭斌(Ting-Pin Wu) 審核日期 2020-4-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明