博碩士論文 105285002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:18.191.157.191
姓名 施嘉翰(Jia-Han Shih)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Copula-based statistical inferences for a common mean vector and correlation ratios using bivariate data)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution
★ Likelihood inference on bivariate competing risks models under the Pareto distribution★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models
★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models★ Copula-based Markov chain model with binomial data
★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文致力於發展使用二元資料對共同平均向量以及相關比進行基於聯結函數之統計推論。在文獻中,二元共同平均向量的估計是一個經典的問題,然而,現行的統計方法只局限於二元常態模型,這促使我們去研究可以包含廣泛的相依結構之聯結函數模型。另一方面,在文獻中也有許多相關係數被提出以描述兩個隨機變數之關係,其中包含皮爾森相關係數、斯皮爾曼相關係數以及肯德爾相關係數,然而,這些相關係數大多無法描述兩個隨機變數間之不對稱關係,這也促使我們去研究相關比之估計和理論
在本篇論文的第一部分,我們提出了一個基於一般性聯結函數的方法來對二元平均向量進行估計,為此,我們定義了在已知共變異矩陣下之一般性聯結函數模型,並且在此模型下,我們推導了一個二元平均向量的最大概似估計量以及費雪情報矩陣之一般性型式,基於獨立但不同分布之理論,我們研究了提出的最大概似估計量之大樣本理論。我們設計了模擬研究來確認提出方法的表現,並且分析了一筆真實資料做示範,我們也為R軟體使用者在CommonMean.Copula套件中提供了計算程式。
在本篇論文的第二部分,我們研究了聯結函數之相關比,首先,我們為Sungur (2005) 所定義的聯結函數相關比推導了一個新的表示法,藉由使用由 Darsow et al. (1992) 所定義的 -product 算子,我們證明了聯結函數相關比等於兩個聯結函數的 -product 之斯皮爾曼相關係數,並且,我們的新表示法也很自然地指出了一個推廣聯結函數相關比的方法,那就是將斯皮爾曼相關係數換置為其他任意的相關係數。此外,我們也研究了聯結函數相關比的理論性質,其中包含兩個相關比的差異以及不連續性,對於多元聯結函數,我們也定義了相關比矩陣並證明了其不變性。
除了理論結果,我們提出了一個無母數方法對聯結函數相關比進行推論,我們的基本工具為由 Segers et al. (2017) 所提出的經驗貝塔聯結函數,且是經驗伯恩斯坦聯結函數的一個特例。我們證明了經驗貝塔聯結函數的聯結函數相關比具有封閉表示法,根據我們得到的新表示法,我們提出了聯結函數相關比以及差異測數的新估計量,此外,我們也使用了重新抽樣的方法來建立新估計量的信賴區間。我們設計了模擬研究來確認提出方法的表現,並且分析了一筆真實資料做示範,最後,我們分析了額外兩組資料來帶出未來可能的研究方向。
摘要(英) This thesis is devoted to develop copula-based methods for making statistical inferences on 1) a common mean vector, and 2) correlation ratios using bivariate data. The estimation of a bivariate common mean vector is a classical problem in the literature. However, the existing statistical methods are limited to the bivariate normal models. This motivates us to explore alternative models that allow a broad class of dependence structures modeled by copulas. On the other hand, many measures of association have been proposed to describe association between two random variables such as Pearson’s correlation coefficient, Spearman’s rho, and Kendall’s tau. However, many of them cannot capture the asymmetric relationship between two random variables. This motives us to study the theory and estimation method for correlation ratios, which are useful for analyzing data having asymmetric association patterns.
In the first part of this thesis, we propose a general copula-based approach for estimating a bivariate common mean vector. We define a general copula model for estimating the bivariate common mean vector under known covariance matrices. Then, under the bivariate copula model, we derive a maximum likelihood estimator (MLE) for the common mean vector. In addition, we derive a general form for the Fisher information matrix. Based on the theory of independent but not identically distributed samples, we study the asymptotic properties of the proposed MLE. Simulation studies are conducted to examine the performance of the proposed method, and a real dataset is analyzed for illustration. The computational programs are made available for R users in our R package CommonMean.Copula.
In the second part of this thesis, we study the copula correlation ratio. We first derive a new expression of the copula correlation ratio that was defined by Sungur (2005). By utilizing the -product operator defined by Darsow et al. (1992), we show that the copula correlation ratio is equal to Spearman’s rho of the -product of two copulas. In addition, our new expression also suggests a natural generalization of the copula correlation ratio by allowing Spearman’s rho to be replaced by any other measure of association. Theoretical properties of the copula correlation ratios are investigated, including difference and discontinuity. For multivariate copulas, we also define the copula correlation ratio matrix with showing its invariance property.
In addition to the theoretical results, we propose a nonparametric inference method for the copula correlation ratio. Our fundamental tool is the so-called empirical beta copula that was proposed by Segers et al. (2017) and is a special case of the empirical Bernstein copula. We will show that the copula correlation ratio of the empirical beta copula has a closed-form expression. Based on our newly obtained expression, we propose new estimators for the copula correlation ratio and difference measure. Resampling technique of the empirical beta copula is employed to construct confidence interval for our new estimators. Simulations studies are conducted to examine the performance of the proposed method, and a real dataset is analyzed for illustration. Lastly, we use two additional datasets to raise potential future works.
關鍵字(中) ★ 漸進理論
★ 相關係數
★ 方向性相關
★ 費雪情報
★ 可逆聯結函數
★ 肯德爾相關係數
★ 馬可夫積
★ 最大概似估計法
★ 迴歸性相關
★ 斯皮爾曼相關係數
★ 斯坦等式
關鍵字(英) ★ Asymptotic theory
★ Correlation coefficient
★ Directional association
★ Fisher information
★ Invertible copula
★ Kendall′s tau
★ Markov product
★ Maximum likelihood estimation
★ Regression association
★ Spearman′s rho
★ Stein′s identity
論文目次 Chapter 1 Introduction ..... 1
1.1 Bivariate copulas: A brief history ..... 1
1.2 Estimation of a bivariate common mean vector ..... 3
1.3 Estimation of association ..... 6
Chapter 2 Background on copulas ..... 9
2.1 Copulas ..... 9
2.2 Survival and semisurvival copulas ..... 13
2.3 Spearman’s rho and Kendall’s tau ..... 15
2.4 The -product ..... 17
Chapter 3 General copula-based estimator of a bivariate common mean vector ..... 21
3.1 General copula model ..... 21
3.2 Maximum likelihood estimation ..... 28
3.3 Fisher information matrix ..... 30
3.3.1 Approximate Fisher information matrix ..... 35
3.4 Asymptotic theory ..... 37
3.5 Confidence set ..... 40
3.6 Software ..... 42
3.7 Simulation ..... 44
3.7.1 Simulation design ..... 44
3.7.2 Simulation results ..... 45
3.8 Real data revisit: Bivariate entrance exam scores ..... 49
Chapter 4 Copula correlation ratio: Theory ..... 54
4.1 Copula correlation ratio ..... 54
4.1.1 Alternative expression ..... 56
4.1.2 Generalization ..... 61
4.2 Theoretical properties ..... 64
4.2.1 Difference ..... 64
4.2.2 Discontinuity ..... 67
4.3 The copula correlation ratio matrix ..... 68
Chapter 5 Copula correlation ratio: Estimation ..... 72
5.1 Parametric estimation ..... 73
5.2 Nonparametric inference ..... 75
5.2.1 Empirical beta copula ..... 75
5.2.2 Point estimation ..... 77
5.2.3 Testing inequality ..... 78
5.3 Simulation ..... 80
5.3.1 Simulation design ..... 80
5.3.2 Simulation results ..... 82
5.4 Real data revisit: Bivariate income ..... 85
5.5 Additional data analysis ..... 87
5.5.1 The gross income data ..... 87
5.5.2 The ovarian cancer data ..... 89
Chapter 6 Discussions and future works ..... 92
6.1 Discussions of Chapter 3 ..... 92
6.2 Discussions of Chapter 4 ..... 93
6.3 Discussions of Chapter 5 ..... 95
Appendix A Proofs for Chapter 3 ..... 97
Appendix A1 Proof of Lemma 3.3 ..... 97
Appendix A2 Proof of Theorem 3.3 ..... 99
Appendix B Proof for Chapter 4 ..... 108
Appendix B1 Proof of Theorem 4.2 ..... 108
Appendix C Proof for Chapter 6 ..... 111
Appendix C1 Derivations of the Fisher information matrix under the bivariate common mean Clayton copula model with exponential margins ..... 111
References ..... 117
參考文獻 Alidoost F, Stein A, Su Z (2019) The use of bivariate copulas for bias correction of reanalysis air temperature data, PLoS ONE 14: e0216059.
Alqawba M, Diawara N, Kim JM (2019), Copula directional dependence of discrete time series marginal, Communications in Statistics: Simulation and Computation, DOI: 10.1080/03610918.2019.1630434
Barnett V (1980) Some bivariate uniform distributions, Communications in Statistics: Theory and Methods, 9: 453-461.
Bairamov IG, Kotz S, Bekci M (2001) New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics, Journal of Applied Statistics, 28: 521-536.
Bairamov I, Kotz S (2002) Dependence structure and symmetry of Hunag-Kotz FGM distributions and their extensions, Metrika, 56: 55-72.
Bhatti MI, Do HQ (2019) Recent development in copula and its applications to the energy, forestry and environmental sciences, International Journal of Hydrogen Energy, 44: 19453-19473.
Berkey CS, Hoaglin DC, Antczak-bouckoms A, Mosteller F, Colditz GA (1998) Meta-analysis of multiple outcomes by regression with random effect, Statistics in Medicine, 17: 2537-2550.
Blest DC (2000) Rank correlation - an alternative measure, Australian and New Zealand Journal of Statistics, 42:101–111.
Bradley RA, Gart JJ (1962) The asymptotic properties of ML estimators when sampling from associated populations, Biometrika, 49: 205-214.
Borucka J (2014) Methods for handling tied events in the Cox proportional hazard model, Studia Oeconomica Posnaniensia, 2: 91-106.
Burzykowski T, Molenberghs G, Buyse M, Geys H, Renard D (2001) Validation of surrogate end points in multiple randomized clinical trials with failure time end points, Journal of the Royal Statistical Society: Series C, 50: 405-422.
Casella G, Berger RL (2002) Statistical Inference, (2nd ed.), Duxbury Press, Australia.
Chaieb LL, Rivest LP, Abdous B (2006) Estimating survival under a dependent truncation, Biometrika, 93: 655-669.
Chang B, Joe H (2019) Prediction based on conditional distributions of vine copulas, Computational Statistics and Data Analysis, 139: 45-63.
Chen YH (2010) Semiparametric marginal regression analysis for dependent competing risks under an assumed copula, Journal of the Royal Statistical Society: Series B, 72: 235-251.
Chen YH (2012) Maximum likelihood analysis of semi-competing risks data with semiparametric regression models, Lifetime Data Analysis, 18: 36-57.
Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika 65: 141-51.
Cribari-Neto F, Zeileis A (2010) Beta regression in R, Journal of Statistical Software, 34: 1-24.
Dabrowska D (1981) Regression-based orderings and measures of stochastic dependence, Series Statistics, 12: 317-325.
Darsow WF, Nguyen B, Olsen ET (1992) Copulas and Markov processes, Illinois Journal of Mathematics, 36: 600-642.
Darsow WF, Olsen ET (2010) Characterization of idempotent copulas, Note di Matematica, 30: 147-177.
Dette H, Siburg KF, Stoimenov PA (2013) A copula-based non-parametric measure of regression dependence, Scandinavian Journal of Statistics, 40: 21-41.
Domma F, Giordano S (2013) A copula-based approach to account for dependence in stress-strength models, Statistical Papers, 54: 807-826.
Domma F, Giordano S (2016) Concomitants of m-generalized order statistics from generalized Farlie-Gumbel-Morgenstern distribution family, Journal of Computational and Applied Mathematics, 294: 413–435.
Dou X, Kuriki S, Lin GD, Richards D (2016) EM algorithms for estimating the Bernstein copula, Computational Statistics and Data Analysis, 83: 228-245.
Durante F (2009) Construction of non-exchangeable bivariate distribution functions, Statistical Papers, 50: 383-391.
Durante F, Sarkoci P, Sempi C (2009) Shuffles of copulas, Journal of Mathematical Analysis and Applications, 352: 914-921.
Durante F, Sempi C (2016) Principles of copula theory, CRC/ Chapman & Hall, Boca Raton.
Embrechts P, McNeil AJ, Straumann D (2002) Correlation and dependency in risk management: properties and pitfalls. In Dempster M, editor, Risk management: value at risk and beyond, pages 176-223, Cambridge University Press, Cambridge.
Emura T (2019) joint.Cox: Penalized likelihood estimation and dynamic prediction under the joint frailty-copula models between tumour progression and death for meta-analysis, CRAN.
Emura T, Lin CW, Wang W (2010) A goodness-of-fit test for Archimedean copula models in the presence of right censoring, Computational Statistics and Data Analysis, 54: 3033-3043.
Emura T, Wang W (2012) Nonparametric maximum likelihood estimation for dependent truncation data based on copulas, Journal of Multivariate Analysis, 110: 171-188.
Emura T, Murotani K (2015) An algorithm for estimating survival under a copula-based dependent truncation model, TEST, 24: 734-751.
Emura T, Chen YH (2016) Gene selection for survival data under dependent censoring, a copula-based approach, Statistical Methods in Medical Research, 25: 2840-2857.
Emura T, Hu YH, Konno Y (2017a) Asymptotic inference for maximum likelihood estimators under the special exponential family with double-truncation, Statistical Papers, 58: 877-909.
Emura T, Nakatochi M, Murotani K, Rondeau V (2017b) A joint frailty-copula model between tumour progression and death for meta-analysis, Statistical Methods in Medical Research, 26: 2649-2666.
Emura T, Nakatochi M, Matsui S, Michimae H, Rondeau V (2018) Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: meta-analysis with a joint model, Statistical Methods in Medical Research, 27: 2842-2858.
Emura T, Chen YH (2018) Analysis of survival data with dependent censoring: copula-based approaches, JSS Research Series in Statistics, Springer, Singapore.
Emura T, Matsui S, Rondeau V (2019a) Survival analysis with correlated endpoints, joint frailty-copula models, JSS Research Series in Statistics, Springer, Singapore.
Emura T, Shih JH, Ha ID, Wilke RA (2019b) Comparison of the marginal hazard model and sub-distribution hazard model for competing risks under an assumed copula, Statistical Methods in Medical Research, DOI: 10.1177/0962280219892295.
Everitt BS, Hothorn T (2010) A handbook of statistical analysis using R, (2nd ed.), CRC Press, Boca Raton.
Everitt BS, Hothorn T (2017) HSAUR2: A handbook of statistical analysis using R (2nd ed.), CRAN.
Fréchet M (1958) Remarques au sujet de la note précédenote, Comptes rendus de l’Académie des Sciences – Series I Mathematics, 246: 2719-2720.
Frank MJ (1979) On the simultaneous associativity f(x, y) and x+y-f(x, y), Aequationes Mathematicae, 19: 194-226.
Fisher NI (1997) Copulas. In Encyclopedia of Statistical Sciences, Updated Vol. 1, John Wiley & Sons, New York, pp 159-163.
Favre AC, Adlouni S, Perreault L, Thiémonge N, Bobée B (2004) Multivariate hydrological frequency analysis using copulas, Water Resources Research, 40: W01101.
Gaspaarrini A (2018) mvmeta: Multivariate and univariate meta-analysis and meta-regression, CRAN.
Genest C, MacKay J (1986) The joy of copulas: bivariate distributions with uniform marginal, The American Statistician, 4: 280-283.
Genest C, Plante JF (2003) On Blest’s measure of rank correlation, The Canadian Journal of Statistics, 31: 35–52.
Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask, Journal of Hydrologic Engineering, 12: 347-368.
Genest C, Nešlehová J (2012) Copulas and copula models, Encyclopedia of Environmetrics, (2nd ed.), John Wiley & Sons, Chichester.
Gleser LJ, Olkin L (1994) Stochastically dependent effect sizes. In the Handbook of Research Synthesis New York: Russel Sage Foundation.
Hoeffding W (1940) Masstabinvariante Korrelationstheorie. Schriften des Matematischen Instituts und des Instituts fur Angewandte Mathematik der Universitat Berlin 5 Heft 3:179-233 [Reprinted as Scale-invariant correlation theory. In: Fisher NI, Sen PK (eds) The Collected Works of Wassily Hoeffding. Springer, New York pp 57-107].
Hoeffding W (1941) Masstabinvariante Korrelationsmasse fur diskontinuierliche Verteilungen. Arkiv fur matematischen Wirtschaften und Sozialforschung 7:49-70 [Reprinted as Scale-invariant correlation measures for discontinuous distributions. In: Fisher NI, Sen PK (eds) The Collected Works of Wassily Hoeffding. Springer, New York pp 109-133].
Huang XW, Emura T (2019) Model diagnostic procedures for copula-based Markov chain models for statistical process control, Communications in Statistics: Simulation and Computation, DOI: 10.1080/03610918.2019.1602647
Joe H (1993) Parametric families of multivariate distributions with given margins, Journal of Multivariate Analysis, 46: 262-282.
Joe H (1997) Multivariate models and dependence concepts, Chapman & Hall, London.
Janssen P, Swanepoel J, Veraverbeke N (2016) Bernstein estimation for a copula derivative with applications to conditional distribution and regression functionals, TEST, 25: 351-374.
Kamnitui N, Santiwipanont T, Sumetkijakan S (2015) Dependence measuring from conditional variances, Dependence Modeling, 3: 98-112.
Kim JM, Jung YS, Sungur EA, Han KH, Park C, Sohn I (2008) A copula method for modeling directional dependence of genes, BMC bioinformatics, 9, 225.
Kim D, Kim JM (2014) Analysis of directional dependence using asymmetric copula-based regression models, Journal of Statistical Computation and Simulation, 84: 1990-2010.
Kim JM, Hwang SY (2017) Directional dependence via Gaussian copula beta regression model with asymmetric GARCH marginals, Communications in Statistics: Simulation and Computation, 46: 7639-7653.
Kim JM, Baik J, and Reller M (2019), Control charts of mean and variance using copula Markov SPC and conditional distribution by copula, Communications in Statistics: Simulation and Computation, DOI: 10.1080/03610918.2018.1547404
Kim JM, Lee Nee, Xiao X (2019) Directional dependence between major cities in China based on copula regression on air pollution measurements, PLoS ONE, 14, e0213148.
Kiriliouk A, Segers J, Tsukahara H (2019) On some resampling procedures with the empirical beta copula, arXiv:1905.12466v1 [math.ST].
Kontopantelis E, Reeves D (2012) Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A simulation study, Stat Method Med Res, 21: 409-426.
Lagerås AN (2010) Copulas for Markovian dependence, Bernoulli, 16: 331-342.
Lee N, Kim JM (2019) Copula directional dependence for inference and statistical analysis of whole‐brain connectivity from fMRI data, Brain and behavior, 9, e01191, doi: 10.1002/brb3.1191.
Lehmann EL (1966) Some concepts of dependence, The Annals of Mathematical Statistics, 37: 1137-1153.
Lehmann EL (2004) Elements of Large-sample Theory, Springer, New York.
Lehmann EL, Casella G (1998) Theory of point estimation, (2nd ed.), Springer, New York.
Lehmann EL, Romano JP (2005) Testing statistical hypotheses, (3rd ed.), Springer, New York.
Lin WC, Emura T, Sun LH (2019) Estimation under copula-based Markov normal mixture models for serially correlated data, Communications in Statistics: Simulation and Computation, DOI: 10.1080/03610918.2019.1652318
Mardia KV (1970) Families of bivariate distributions, Griffin, London.
Mavridis D, Salanti G (2011) A practical introduction to multivariate meta-analysis, Statistical Methods in Medical Research, 22: 133-158.
Mikusiński P, Sherwood H, Taylor MD (1992) Shuffles of min, Stochastica 13: 61–74.
Morgenstern D (1956) Einfache Beispiele zweidimensionaler Verteilungen, Mitteilungsblatt für Mathematishe Statistik, 8: 34-235.
Nelsen RB (1986) Properties of a one-parameter family of bivariate distributions with specified marginal, Communications in Statistics: Theory and Methods, 11: 3277-3285.
Nelsen RB (1997) Dependence and order in families of Archimedean copulas, Journal of Multivariate Analysis, 60: 111-122.
Nelsen RB (1998) Concordance and Gini’s measure of association, Journal of Nonparametric Statistics, 9: 227-238.
Nelsen RB (2006) An Introduction to Copulas, (2nd ed.), Springer, New York.
Nelsen RB (2007) Extremes of nonexchangeability, Statistical Papers, 48: 329-336.
Oakes D (1982) A model for association in bivariate survival data, Journal of Royal Statistical Society: Series B, 44: 414-422.
Oakes D (1989) Bivariate survival models induced by frailties, Journal of American Statistical Association, 84: 487-493.
Peng M, Xiang L, Wang S (2018) Semiparametric regression analysis of clustered survival data with semi-competing risks, Computational Statistics and Data Analysis, 124, 53-70.
Rényi A (1959) On measures of dependence, Acta Mathenatica Academiae Scientiarum Hungarica, 10: 441-451.
Resnick SI (2005) A Probability Path, Birkhäuser, Boston.
Riley RD (2009) Multivariate meta-analysis: the effect of ignoring within-study correlation, Journal of Royal Statistical Society: Series A, 172: 789-811.
Riley RD, Ensor J, Jackson D, Burke DL (2017) Deriving percentage study weights in multi-parameter meta-analysis models: with applications to meta-regression, network meta-analysis and one-stage individual participant data models, Stat Method Med Res, DOI: 10.1177/0962280216688033.
Ruankong R, Santiwipanont T, Sumetkijakan S (2013) Shuffles of copulas and a new measure of dependence, Journal of Mathematical Analysis and Applications, 398: 392-402.
Rotolo F, Paoletti X, Michiels S (2018) surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analysis of randomized clinical trials, Computer Methods and Programs in Biomedicine, 155: 189-198.
Sancetta A, Satchell S (2004) The Bernstein copula and its applications to modeling and approximations of multivariate distributions, Econometric Theory, 20: 535-562.
Schweizer B, Wolff EF (1981) On nonparametric measures of dependence for random variables, The Annals of Statistics, 9: 879-885.
Schepsmeier U, Stöber J (2014) Derivatives and Fisher information of bivariate copulas, Statistical Papers, 55: 525-542
Schucany WR, Parr WC, Boyer JE (1978) Correlation structure in Farlie-Gumbel-Morgenstern distributions, Biometrika, 65: 650-653.
Segers J, Sibuya M, Tsukahara H (2017) The empirical beta copula, Journal of Multivariate Analysis, 155, 35-51.
Shao J (2003) Mathematical Statistics, Springer, New York.
Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges, Publications de l’Institut de Statistique de L’Université de Paris, 8: 229–231.
Siburg KF, Stoimenov PA (2008) A scalar product for copulas, Journal of Mathematical Analysis and Applications, 344: 429-439.
Siburg KF, Stoimenov PA (2010) A measure of mutual complete dependence, Metrika, 71: 239-251.
Siburg KF, Stoimenov PA (2015) Almost opposite regression dependence in bivariate distributions, Statistical Papers, 56: 1033-1039.
Shih JH, Louis TA (1995) Inference on the association parameter in copula models for bivariate survival data, Biometrics, 51: 1384-1399.
Shih JH (2019) CommonMean.Copula: Bivariate common mean vector under copula models, CRAN
Shih JH, Emura T (2018) Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula, Computational Statistics, 33: 1293-1323.
Shih JH, Emura T (2019) Bivariate dependence measures and bivariate competing risks models under the generalized FGM copula, Statistical Papers, 60: 1101-1118.
Shih JH, Konno Y, Chang YT, Emura T (2019a) Estimation of a common mean vector in bivariate meta-analysis under the FGM copula, Statistics, 53: 673-695.
Shih JH, Lee W, Sun LH, Emura T (2019b) Fitting competing risks data to bivariate Pareto models, Communications in Staitsitcs: Theory and Methods, 48: 1193-1220.
Shinozaki N (1978) A note on estimating the common mean of k normal distribution and the Stein problem, Communication in Statistics: Theory and Methods, 7: 1421-1432.
Sungur EA (2005) A note on directional dependence in regression setting, Communications in Statistics: Theory and Methods, 34: 1957-1965.
Sun LH, Huang XW, Alqawba M, Kim JM, Emura T (2020) Copula-based Markov models for time series, Parametric inference and process control, JSS Research Series in Statistics, Springer
Takeuchi TT (2010) Constructing a bivariate distribution function with given marginal and correlation: application to the galaxy luminosity function, Monthly Notice of the Royal Astronomical Society, 406: 1830-1840.
van der Vaart AW (1998) Asymptotic statistics, Cambridge University Press, Cambridge.
Weiß G (2011) Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study, Computational Statistics, 26: 31-54.
Zeileis A, Cribari-Neto F, Gruen B, Kosmidis I, Simas AB, Rocha AV (2019) betareg: Beta regression, CRAN.
指導教授 江村剛志(Takeshi Emura) 審核日期 2020-3-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明