博碩士論文 103553016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.133.159.125
姓名 卓小棋(Hsiao-Chi Cho)  查詢紙本館藏   畢業系所 通訊工程學系在職專班
論文名稱 基於冕狀藍芽低功耗網路的實際功率效能及平衡研究
(Practical Performance Study on Power Consumption and Balancing in BLE-Based Networks)
相關論文
★ 非結構同儕網路上以特徵相似度為基準之搜尋方法★ 以階層式叢集聲譽為基礎之行動同儕網路拓撲架構
★ 線上RSS新聞資料流中主題性事件監測機制之設計與實作★ 耐延遲網路下具密度感知的路由方法
★ 整合P2P與UPnP內容分享服務之家用多媒體閘道器:設計與實作★ 家庭網路下簡易無縫式串流影音播放服務之設計與實作
★ 耐延遲網路下訊息傳遞時間分析與高效能路由演算法設計★ BitTorrent P2P 檔案系統下載端網路資源之可調式配置方法與效能實測
★ 耐延遲網路中利用訊息編碼重組條件之資料傳播機制★ 耐延遲網路中基於人類移動模式之路由機制
★ 車載網路中以資料匯集技術改善傳輸效能之封包傳送機制★ 適用於交叉路口環境之車輛叢集方法
★ 車載網路下結合路側單元輔助之訊息廣播機制★ 耐延遲網路下以靜態中繼節點(暫存盒)最佳化訊息傳遞效能之研究
★ 耐延遲網路下以動態叢集感知建構之訊息傳遞機制★ 跨裝置影音匯流平台之設計與實作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在物聯網環境下低功耗藍牙技術廣泛應用在家庭網路和個人移動場域,但當每個物件裝置均需藉由中央控制器角色來協助接取網路,會因為感測裝置位置不同或距離過遠而無法做到最佳消耗能量控制,若是其電源是依賴電池,則無法做到遠端和近端設備同時電源耗盡的目標,在內圈的感應器會因為要處理由外圈匯入的資料流,會較外圈的感應器有較快耗電的結果,形成內圈感應器較快電池耗盡,而形成網路路徑斷線,這對於管理感測裝置會造成通訊困擾。然而現今諸多的低功耗藍芽研究針對能源平衡之作法,為了達成功率消耗的平衡和考慮頻寬使用率,越靠近中央資料匯流點所需部署的感應器數越多,以便處理外層所入進的資料量,但是如此一來內層的感應器數量會暴增。
本篇論文提出一套適用於低功耗藍牙技術之傳送功率自動階層分級化機制,此機制可將所有感應器依據其位置,分成多個同心冕圈,並將一個傳送的頻寬分成若干等份,並允許內層使用較大頻寬比例,但越外層因為資料負載較輕,需使用頻寬相對較少,所以相對其內層功率消耗較少,這樣的設計可將內外層頻寬的使用差異量化,藉此找出其對應無線傳送功率的差異,並將此差異轉換成不同的傳送功率,以便讓較外層的感應器允許較遠的傳送距離。此外,外圈可藉由較大無線半徑,來消耗因頻寬使用較少所多出的功率,也可藉此提供較大無線覆蓋範圍,相較之下內圈則不需大範圍的無線覆蓋範圍,但須更高頻寬使用率來應付外圍資料流的匯入。再者本論文研究亦建置一套電流量測環境,根據低功耗藍芽感應器所在位置加以做發射功率控制以及封包最佳化,量測的模擬結果顯示,此機制可自動化分析內外層頻寬使用的分佈,進一步找出其每層頻寬功率差,並藉由調整天線傳送功率來消耗掉因頻寬使用率的差異,也可讓外圍感測裝置享有較遠的傳送距離,以達到內外層功率消耗相同的目標。相對於過去感測器均勻分佈和非均勻分佈機制的做法,我們提出的機制在對比感測器均勻分佈的做法有也減少百分之10的電池耗電速度,在對比以往均勻及非均勻分佈機制感測器無線所能覆蓋距離也有顯著的拉遠。因此,本論文提出的功率平衡機制應可適用在多數無線低功耗的環境/應用,期能達到延長整體無線網路使用時間以及增大無線感測計覆蓋的距離。
摘要(英) Bluetooth Low Energy (BLE) technologies are popular in IoT environments. Lots of BLE-enabled sensor devices must access the Internet by a central controller. Different sensor devices will cause different speeds of energy dissipation due to different sensor positions and distances. Thus, those devices cannot synchronize power drains simultaneously between distal and proximal sensors. Current energy leveling techniques are apt to deploy an increasing number of sensors closer to the central sink of data flows to process the increasing amount of data from outer regions, this manner which aims to strike a balance of power consumption and bandwidth utilization. However, this sort of techniques can induce a considerable increase of sensor devices and induce unscaled cost expense for sensor deployment in a large application field.
This paper proposes a balancing mechanism for power dissipation in BLE-based wireless sensor networks. The mechanism design is to divide the positions of all sensors into m coronas, and the bandwidth of a transmission can be divided into k basins. Sensors in an inner corona use a larger portion of transmission bandwidth, while data loading in an outer corona is relatively less. Thus, the proposed mechanism can differentiate the usages of transmission bandwidth between inner and outer coronas. With the information of differentiated data load and bandwidth usage, this mechanism can specify different transmission powers and convert the difference into separate transmission distances. Particularly, sensors in an outer corona can consume higher power using a larger wireless radius, and also provide a larger range of wireless coverage. By contrast, the inner circle does not require a wide range of wireless coverage, but requires higher bandwidth to cope with the convergence of incoming data streams from other outer areas. Finally, the simulation results show that adjusting the antenna transmission power and controlling the bandwidth usage can obtain the goal. Those sensors in both inner and outer areas can have similar power consumptions.
關鍵字(中) ★ 功率消耗
★ 冕型拓撲
★ 藍牙低功耗技術
★ 無線感測網路
★ 物聯網
關鍵字(英) ★ Power consumption
★ Corona-based topology
★ Bluetooth low energy (BLE)
★ Wireless sensor networks (WSN)
★ Internet of Things (IoT)
論文目次 Contents
摘要 i
Abstract ii
誌謝 iii
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
1.1 Corona-based Topology Definition: Notion and Issues 2
1.2 A Proposed Concept 4
1.3 Key Findings from Research 5
1.4 Application Scenarios 6
Chapter 2 Survey on Generic Energy Consumption of WSNs 7
Chapter 3 Observation and Findings 10
3.1 BlueNRG Current Consumption Estimation Tool 10
3.2 Power Consumption Types and Tx PWR Classifications 11
3.2.1 Power Consumption Types and Parameter Definitions with BLE 11
3.2.2 Maximum Transmission Power and Range 15
3.2.3 Maximum Transmission Power and Range 16
3.3 Analysis Possible Factors for Effective Power Difference 16
3.4 Relationship between Tx Payloads and Power Dissipation 18
3.5 Packet per Connection Interval and Connection Interval 21
3.6 Transmitting Power Comparison with Different Payload 26
3.7 Summary of Findings 28
Chapter 4 A Generic Corona-Based WSN 29
4.1 Assumption and System Model 29
4.2 The Current Dissipation and Battery Life Estimation 33
Chapter 5 A Balancing Architecture for Power Balancing in WSNs 35
5.1 Proposed Concept 35
5.2 Assumption and System Model 36
5.3 Estimation of Total Average Current 39
5.4 Comparisons of Battery Life and the Radio Range 42
5.5 Scaling and Flow Chart 45
Chapter 6 Conclusions and Future Works 51
Bibliography 52

參考文獻 [1] Huei-Wen Ferng, Mardianto Soebagio Hadiputro, Arief Kurniawan, “Design of Novel Node Distribution Strategiesin Corona-Based Wireless Sensor Networks,” in IEEE Transactions on Mobile Computing, Vol. 10, No. 9, pp. 297 – 1311, September 2011.
[2] Jian Li and Pransant Mohapatra, “An Analytical Model for the Energy Hole Problem in Many-to-One Sensor Networks,” in Proc. IEEE VTC-Fall’05, pp. 2721-2725, 2005.
[3] John A. Stankovic, “Wireless Sensor Networks,” IEEE Computer Magazine, Vol. 41, No. 10, pp. 92-95, October 2008.
[4] STMicroelectronics, STSW-BNRG001 2016, BlueNRG Current Consumption Estimation Tool. Available online: https://www.st.com. [(accessed on 12 December 2017)].
[5] BluetoothSIG, Specification of the Bluetooth System, Covered Core Package Version: 5.0. The Bluetooth Special Interest Group; Kirkland, WA, USA: 2016. [(accessed on 12 December 2017)]. Vol 6: Core System Package [Low Energy Specification], Part A: Physical Layer Specification; pp. 2532–2546. Available online: https://www.bluetooth.org/
[6] Bluetooth SIG (2016). Bluetooth Low Energy. Available at: https://www.blue-tooth.com/what-is-bluetooth-technology/bluetooth-technology-basics/low-energy. Ac-cessed 1 April 2016
[7] Henrik Snellman, Mikko Savolainen, Jere Knaappila, Pasi Rahikkal, “Bluetooth® 5, Refined for the IoT,” available at: https://www.silabs.com/whitepapers/bluetooth-5-refined-for-the-iot
[8] Bluetooth SIG, Bluetooth 5 Core Specification. See https://www.bluetooth.com/specifications/bluetooth-core-specification
[9] Xiaobing Wu, Guihai Chen, and Sajal K. Das, “Avoiding Energy Holes in Wireless Sensor Networks with Nonuniform Node Distribution.” in IEEE Transactions on Parallel and Distributed Systems, Vol. 19, Issue 5, pp. 710–720, May 2008.
[10] Hassan Hamid Ekal and J. Abdullah, A. Jamil, L. Audah, R. Alias, “Energy Balance Mechanism for Improving the Lifetime in Dense Centric Wireless Sensor Networks,” in Proc. IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2016.
[11] ChengFang Zhen, Wenyi Liu, Yongrui Liu, and Anbin Yan, “An Energy-Efficient Sleep/Wake Scheduling for Acoustic Localization Wireless Sensor Network Node.” International Journal of Distributed Sensor Network, 2014.
[12]Natale Guzzo, Nathalie Mitton, Pascal Daragon, and Arulnambi Nandagoban. “A Cluster-based and On-demand routing algorithm for Large-Scale Multi-hop Wireless Sensor Networks.” International Conference on Ad Hoc Networks, pp. 98-109. ISBN: 978-3-319-13328-7, DOI: https://doi.org/10.1007/978-3-319-13329-4_9
[13]Punyasha Chatterjee, and Nabanita Das. “Multiple Sink Deployment in Multi-Hop Wireless Sensor Networks to Enhance Lifetime,” in Proc. of 2015 Internation Conference on Applications and Innovations in Mobile Computing (AIMoC), pp. 48-54, IEEE INSPEC Accession Number: 15072640, DOI: 10.1109/AIMOC.2015.7083829.
[14] Robin Heydon, The Physical Layer. In: Goodwin B., editor. Bluetooth Low Energy—The Developer’s Handbook. Prentice Hall-Pearson Education, Inc.; Upper Saddle River, NJ, USA: 2012. pp. 59–69. ISBN:9780132888363
[15] STMicroelectronic. BlueNRG-2 Bluetooth LE wireless network processor Datasheet DS12166 Rv 5.2018
Available at: https://www.st.com/resource/en/datasheet/bluenrg-2.pdf
[16] Wei Kuang Lai and Chung-Shuo Fan, “Novel Node Deployment Strategies in Corona Structure for Wireless Sensor Networks,”in IEEE Access, Vol. 5, pp. 3889 – 3899, March 2017, Available at https://ieeexplore.ieee.org/document/7875436
[17] STMicroelectronics . Data brief STEVAL-IDB008V2. STMicroelectronics; 2018. Bluetooth low energy wireless system-on-chip . Available online: https://www.st.com/
指導教授 胡誌麟(Chih-Lin Hu) 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明