博碩士論文 102232002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.95.233.107
姓名 陳立諺(Li-Yan Chen)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 圓偏振入射光對三維物體產生之光作用力與光力矩之研究
(Research on the Optical Force and Optical Torque of Circularly Polarized Incident Light on Three-Dimensional Objects)
相關論文
★ 平坦化陣列波導光柵分析和一維光子晶體研究★ 光子晶體波導與藕合共振波導之研究
★ 光子晶體異常折射之研究★ 光子晶體傳導帶與介電質柱波導之研究
★ 平面波展開法在光子晶體之應用★ 偏平面光子晶體能帶之研究
★ 通道選擇濾波器之探討★ 廣義光子晶體元件之研究與分析
★ 新式光子晶體波導濾波器之研究★ 廣義非均向性介質的光傳播研究
★ 光子晶體耦合濾波器之研究★ 聲子晶體傳導帶與週期性彈性柱波導之研究
★ 對稱與非對稱波導光柵之特性研究★ 雙曲透鏡之研究
★ 電磁波與聲波隱形斗篷之研究★ 次波長成像近場透鏡之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文考量三維幾何結構對光作用力與光力矩變化。我們選用不同波長的圓偏振入射光源,透過有限元素法得到介電質表面電磁場分布,代入馬克斯威爾應力方程得到每一網格點之的光應力,將每網格點光作用力,對位置向量進行外積,接著加總每網格的光力矩,得到全體三維結構之光力矩。接著分析局部結構電場分布與光力矩振盪表現,透過篩選不同入射波長,達到光操作物體旋轉方向的成效,並以圓盤結構為基礎,延伸設計為各樣結構進行分析,觀察其光力矩振盪行為變化。

最後給出我們自行提出的5-layer結構,此設計於1.66 um ~0.62 um處皆為正光力矩,而0.62 um ~0.51 um皆為負光力矩,在特定波長達到正負力矩一分為二的效果,除此之外,y分量與z分量之光力矩於1.66 um~0.51 um波長內皆趨於零,成功降低其正負光力矩對波長之振盪行為,其設計優勢將光操作物體旋轉領域,帶來全新穩定操作微米物質旋轉的成果。
摘要(英) In this thesis, we discuss the optical force and optical torque of circularly polarized incident light on three-dimensional objects. We use circularly polarized light as incident light in different wavelengths. The electromagnetic field distribution on the grid surface is obtained by the finite element method, and the light stress on each grid point is obtained from Maxwell′s stress equation, and the overall optical force is evaluated by summing over the contributions from all grid points. Similarly, to calculate the optical torque of a three-dimensional object, we first calculate at each grid point the cross product of the position vector and the optical force, then sum over the surface contributions from the whole geometric structure. We analyzed the surface distribution of the electric field and the local oscillation behavior of the optical torque density on the surfaces of various three-dimensional structures. These results provide us with the information on how to change the wavelength of incident light to control the direction of rotation. Based on the knowledge obtained in the study of disc structures, we further designed various structures and analyzed their optical torque oscillation characteristics.

Finally, we proposed a 5-layer structure. This design has positive optical torque in 1.66 um ~ 0.62 um, and negative optical torque in 0.62 um ~ 0.51 um. In addition, the optical torque of the y and z components approach zero within the wavelength of 1.66 um ~ 0.51 um. This structure successfully reduces the unwanted oscillation behavior of the optical torque appearing in the positive or negative region, and thus has the advantage of providing the necessary stability in controlling the rotation direction of microscopic structures.
關鍵字(中) ★ 光作用力
★ 光力矩
關鍵字(英) ★ Optical Force
★ Optical Torque
論文目次 摘要 V
Abstract I
致謝 II
目錄 i
圖目錄 iv
第一章 緒論 1
1-1 前言 1
1-2 歷史背景 2
1-3 文獻回顧 3
1-3-1光鉗 3
1-3-1矩形共振波導 5
1-3-2光子晶體波導 6
1-3-3 環形共振波導 8
1-3-2光學角動量的力矩效應 10
1-4 論文架構 13
第二章 理論與方法 14
2-1 馬克斯威爾方程組與邊界條件 14
2-1-1波動方程 16
2-1-2馬克斯威爾張量應力 17
2-1-3光力矩計算 19
2-2平面波與圓偏振光線 20
第三章 結果與討論 22
3-1 模擬架構 22
3-1-1 基本參數設定 22
3-1-2 邊界條件設定 23
3-1-3 網格設定 24
3-2 圓盤介電質 26
3-2-1 Fabry-Perot 反射率計算 27
3-2-2 圓盤光作用力和力矩 28
3-2-2 圓盤區域光力和光力矩分析 30
3-2-3 圓盤力矩反轉歸一電場分布 33
3-2-4 圓盤z方向切線力矩變化趨勢分析 34
3-2-4-1 z方向切線力矩下降區段電場分析 35
3-2-4-2 z方向切線力矩上升區段電場分析 38
3-2-5 圓盤x方向力矩變化趨勢分析 41
3-2-5-1 x方向力矩下降區段電場分析 42
3-2-5-1 x方向力矩上升區段電場分析 45
3-2-6 圓盤折射率分析 48
3-2-7 圓盤半徑分析 49
3-2-8 圓盤厚度分析 51
3-2-9 圓盤不同角度入射分析 55
3-2-10 圓盤於線偏振入射光分析 56
3-2-11 圓盤於橢圓偏振入射光分析 57
3-3 橢圓盤介電質 59
3-3-1 橢圓盤光作用力與光力矩 60
3-2-3 圓盤缺角介電質 62
3-2-4 5-layer介電質 64
第四章 結論與未來展望 68
4-1 結論 68
4-2 未來與展望 71
參考文獻 72
參考文獻 [1] Ashkin, A., ”Acceleration and Trapping of Particles by Radiation Pressure,” Physical Review Letters 24, 156 (1970).
[2] Ashkin, A. and J. M. Dziedzic, ”Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Physical Review Letters 38, 1351 (1977).
[3] Ashkin, A., J. M. Dziedzic, J. E. Bjorkholm and S. Chu., ”Observation of a single-beam gradient force optical trap for dielectric particles,” Optics Letters 11, 288 (1986).
[4] Phillips, W. D., ”Nobel Lecture: Laser cooling and trapping of neutral atoms,” Reviews of Modern Physics 70, 721 (1998).
[5] Steane, A. M., M. Chowdhury and C. J. Foot., ”Radiation force in the magneto-optical trap,” Journal of the Optical Society of America B 9, 2142 (1992).
[6] Zhang, H. and K.-K. Liu., ”Optical tweezers for single cells,” Journal of the Royal Society, Interface 5, 671 (2008).
[7] Zhong, M. C., X. B. Wei, J. H. Zhou, Z. Q. Wang and Y. M. Li., ”Trapping red blood cells in living animals using optical tweezers,” Nature Communications 4, 1768 (2013).
[8] Zhang, Z., T. E. P. Kimkes and M. Heinemann., ”Manipulating rod-shaped bacteria with optical tweezers,” Scientific Reports 9, 19086 (2019).
[9] Povinelli, M. L., M. Lončar, M. Ibanescu, E. J. Smythe, S. G. Johnson, F. Capasso and J. D. Joannopoulos., ”Evanescent-wave bonding between optical waveguides,” Optics Letters 30, 3042 (2005).
[10] Ma, J. and M. L. Povinelli., ”Large tuning of birefringence in two strip silicon waveguides via optomechanical motion.” Optics Express 17, 17818 (2009).
[11] 欒丕綱、陳啟昌--光子晶體 (從蝴蝶翅膀到奈米光子學),第二版,五南出版社 (2010).
[12] Pernice, W. H. P., M. Li and H. X. Tang., ”Theoretical investigation of the transverse optical force between a silicon nanowire waveguide and a substrate,” Optics Express 17, 1806 (2009).
[13] Eichenfield, M., J. Chan, R. M. Camacho, K. J. Vahala and O. Painter., ”Optomechanical crystals,” Nature 462, 78 (2009).
[14] Chan, J., M. Eichenfield, R. Camacho and O. Painter., ”Optical and mechanical design of a “zipper” photonic crystal optomechanical cavity,” Optics Express 17, 3802 (2009).
[15] Wiederhecker, G. S., L. Chen, A. Gondarenko and M. Lipson., ”Controlling photonic structures using optical forces,” Nature 462, 633 (2009).
[16] Van Thourhout, D. and J. Roels., ”Optomechanical device actuation through the optical gradient force,” Nature Photonics 4, 211 (2010).
[17] Einat, A. and U. Levy., ”Analysis of the optical force in the Micro Ring Resonator,” Optics Express 19, 20405 (2011).
[18] Li, M., S. Yan, B. Yao, Y. Liang and P. Zhang., ”Spinning and orbiting motion of particles in vortex beams with circular or radial polarizations,” Optics Express 24, 20604 (2016).
[19] Diniz, K., R. S. Dutra, L. B. Pires, N. B. Viana, H. M. Nussenzveig and P. A. Maia Neto., ”Negative optical torque on a microsphere in optical tweezers,” Optics Express 27, 5905 (2019).
[20] Chen, J., J. Ng, K. Ding, K. H. Fung, Z. Lin and C. T. Chan., ”Negative optical torque,” Scientific Reports 4, 6386 (2014).
[21] Han, F., J. A. Parker, Y. Yifat, C. Peterson, S. K. Gray, N. F. Scherer and Z. Yan ., ”Crossover from positive to negative optical torque in mesoscale optical matter,” Nature Communications 9, 4897 (2018).
[22] David J. Griffiths, “Introduction to Electrodynamics,” 3rd Edition, ‎Cambridge University Press (1999).
[23] Coggon, J. H.., ”ELECTROMAGNETIC AND ELECTRICAL MODELING BY THE FINITE ELEMENT METHOD,” GEOPHYSICS 36, 132 (1971).
[24] 皮托科技, COMSOL Multiphysics 電磁模擬有限元素分析
指導教授 欒丕綱(Pi-Gang Luan) 審核日期 2020-5-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明