博碩士論文 105521139 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.149.255.10
姓名 丁于晴(Yu-Ching Ting)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 孕婦腹部多導程胎兒心電訊號偵測之深度學習硬體設計與實作
(Design and Implementation of Deep Learning for Fetal ECG Detection from Multi-lead Maternal Abdominal ECG Recording)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-22以後開放)
摘要(中) 基於卷積神經網路,將孕婦腹部心電訊號進行胎兒心電訊號與孕婦心電訊辨別,使得以非侵入式的方式偵測也能達到高準確度之偵測辨識結果。首先資料前處理需以250毫秒作為樣本分割與10毫秒的重疊區,,並將每個樣本標記,分為4類別,再運算短時距傅立葉轉換,資料轉為時頻二維的特徵圖,以及移除基準線漂移的步驟。而本文之卷積神經網路架構包含兩層卷積層、兩層池化層,與全連接層,最終輸出結果為4類別判別之機率值,其中卷積層包含了激活函數,本文使用Sigmoid函數,輸出層前也透過Softmax函數將資料轉為機率形式。反向傳播中運用損失函數計算誤差值,並用偏導數之運算搭配學習率的設定,將參數進行更新,而迭代次數的設定讓卷積神經網路在次數內進行訓練學習與測試,再加上融合之方式,4條導線的結果得以統一。本文將兩組不同心電訊號進行測試,測試結果最高可達98%之偵測率,偵測率明顯高於KNN演算法與隨機森林演算法。硬體設計方面,本文對其做複雜度評估與量化分析後,決定以Doubling Algorithm設計FFT架構減少乘法器數量並搭配Radix2^2,而卷積神經網路架構採記憶體型態方式做設計,卷積層之運算排程設計和加入區域暫存器,可以讓記憶體讀取寫入次數分別下降約7.2%與3.3%,兩層卷積層與激活函數之查表硬體皆共用,並將查表範圍由2^14下降為2^11,以減少硬體面積,最後並以FPFA進行驗證。
摘要(英) Based on convolutional neural network(CNN), we introduce a recognition and monitoring system for distinguish fetal electrocardiogram(fECG) signals and maternal electrocardiogram(mECG) signals from pregnant abdominal ECG recording, so that non-invasive electrodes detection can also achieve high detection rate. First, the data pre-processing make the abdominal ECG waveform is partitioned into 250ms as a segment with 10ms overlap area. Marking each segment into four different labels. In order to reduce the noise effect of the ECG signals in time domain, short-time Fourier transform is convert the ECG signals into two-dimensional time-frequency feature map. Then, we removing the baseline wandering. In this thesis, CNN architecture consists of two convolutional layers, two pooling layers, and fully connected layer, the final output result are probability value of 4 classes. The convolutional layer contains the activation function, using sigmoid function. Before the output layer, the data are also converted into the probability through the softmax function. In back propagation, calculating the error of the loss function, and the partial derivative with learning rate to update the parameters. In addition to the fusion, four leads record can generate one final result. We use two set of different ECG signal to test, the detection rates of pregnant a02, and a05 are 98.62% and 98.51%, respectively. Compared with the conventional K-nearest neighbor algorithm and random forest, a higher detection accuracy is achieved. For hardware design, after doing the complexity evaluation and quantization, we decided the FFT architecture with doubling algorithm to reduce the number of multipliers and use 〖radix2〗^2. The CNN architecture is designed by memory based, the schedule of the convolutional layer and local buffer design decreases the number of memory accesses to 7.2%, and 3.3%, respectively. The two hardware of convolutional layers are shared. And make the size of LUT reduced from 2^14 to 2^11 to reduce the area. Finally, the overall hardware design verified by FPGA.
關鍵字(中) ★ 心電訊號
★ 胎兒心電訊號
★ 卷積神經路
關鍵字(英) ★ ECG
★ fetal ECG
★ CNN
論文目次 摘要 I
Abstract II
目錄 IV
圖示目錄 VII
表格目錄 VIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 論文組織 3
第二章 孕婦腹部心電訊號偵測及相關知識說明 5
2.1 孕婦腹部心電訊號偵測方法與種類 5
2.2 孕婦及胎兒心電訊號介紹 6
2.3 腹部心電訊號偵測之資料庫說明 7
第三章 胎兒心電訊號偵測之訊號前處理 12
3.1 腹部心電訊號前處理(Data Processing) 13
3.1.1 正規化(Normalization) 14
3.1.2 樣本分割及重疊(Segmentation with Overlapping) 16
3.1.3 短時距傅立葉轉換(Short-Time Fourier Transform) 19
3.1.4 基準線飄移移除(Removing Baseline Wandering) 29
3.2 樣本分組與標記類別(Classification and Labeling) 30
第四章 卷積神經網路之孕婦腹部胎兒心電訊號偵測及辨識演算法 34
4.1 卷積神經網路(Convolutional Neural Network) 34
4.1.1 卷積神經網路之簡介(Introduction) 37
4.1.2 卷積神經網路架構(Architecture) 38
4.1.3 前向傳播(Forward Propagation) 41
4.1.4 超參數決定(Hyper Parameter Determination) 45
4.1.5 激活函數(Activation Function) 51
4.1.6 損失函數(Loss Function) 53
4.1.7 反向傳播(Back Propagation) 54
4.1.8 參數更新(Weight and Bias Update) 58
4.2 融合(Fusion) 59
4.3 演算法模擬結果(Simulation Result) 60
4.4 與其他胎兒心電訊號偵測演算法 [5]結果比較 69
第五章 硬體架構設計與實現 72
5.1 硬體設計流程 72
5.1.1 硬體複雜度評估 73
5.1.2 字元長度與量化分析 78
5.2 硬體架構解析 81
5.2.1 資料前處理傅立葉轉換硬體架構 81
5.2.2 卷積神經網路硬體架構 82
5.3 各模組內部架構介紹 82
5.3.1 傅立葉轉換 82
5.3.2 Coordinate Rotation Digital Computer (CORDIC) 84
5.3.3 卷積層 84
5.3.4 Sigmoid和Softmax查表法 89
5.3.5 記憶體與區域暫存器 91
5.3.6 全連接層與輸出層 96
5.4 硬體模擬 98
5.5 硬體比較 100
第六章 結論 102
參考文獻 103
參考文獻 [1] (A.Muthuchudar, Lt.Dr.S.Santosh Baboo, 2013)
[2] L. Goldberger, et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals”, Circulation, 101(23), pp.215- 220, 13 June 2000.
[3] E. C. Karvounis, M. G. Tsipouras, D. I. Fotiadis and K. K. Naka, ”A Method for Fetal Heart Rate Extraction Based on Time-Frequency Analysis,” 19th IEEE Symposium on Computer-Based Medical Systems (CBMS′06), Salt Lake City, UT, 2006, pp. 347-347.
[4] R. Martín-Clemente, J. L. Camargo-Olivares, S. Hornillo-Mellado, M. Elena and I. Román, ”Fast Technique for Noninvasive Fetal ECG Extraction,” in IEEE Transactions on Biomedical Engineering, vol. 58, no. 2, pp. 227-230, Feb. 2011.
[5] J. A. Delgado, et al., “Haar wavelet transform and principal component anaylsis for fetal QRS classification from abdominal maternal ECG recordings,” Symposium on Signal Processing, Images and Computer Vision, pp. 1-6, 2015.
[6] S. Y. Chun, et al., “ECG based user authentication for wearable devices using short time Fourier transform,” International Conference on Telecommunications and Signal Processing (TSP), pp. 656-659, 2016.
[7] Y. LeCun, C. Cortes, and C. Burges, ”MNIST handwritten digit database, 1998,” URL http://www. research. att. com/~ yann/ocr/mnist,2016.
[8] J. Cardenas-Lattus and H. Kaschel, ”Fetal ECG multi-level analysis using daubechies wavelet transform for non-invasive maternal abdominal ECG recordings,”2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, 2017, pp. 1-6.
[9] M. Papadomanolaki, S. Verma, M. Vakalopoulou, S. Gupta and K. Karantzalos, ”Detecting Urban Changes with Recurrent Neural Networks from Multitemporal Sentinel-2 Data,” IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019, pp. 214-217.
[10] J. Zhang, ”Deep Transfer Learning via Restricted Boltzmann Machine for Document Classification,” 2011 10th International Conference on Machine Learning and Applications and Workshops, Honolulu, HI, 2011, pp. 323-326.
[11] P. Sermanet, K. Kavukcuoglu, S. Chintala and Y. Lecun, ”Pedestrian Detection with Unsupervised Multi-stage Feature Learning,” 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, 2013, pp. 3626-3633.
[12] Prasanth K, Baby Paul, Arun Balakrishnan A, ”Fetal ECG Extraction Using Adaptive Filters. International Jrnl of Adv Research in Electrical,” Electronics and Instrumentation Engineering 2, pp. 1483-1487, 2013.
[13] Shousheng He and M. Torkelson, ”A new approach to pipeline FFT processor,” Proceedings of International Conference on Parallel Processing, Honolulu, HI, USA, 1996, pp. 766-770.
[14] J. Wu, F. Li, Z. Chen, Y. Pu and M. Zhan, ”A Neural Network-Based ECG Classification Processor With Exploitation of Heartbeat Similarity,” IEEE Access, vol. 7, pp. 172774-172782, 2019.
[15] H. Sorensen, D. Jones, M. Heideman and C. Burrus, ”Real-valued fast Fourier transform algorithms,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 35, no. 6, pp. 849-863, June 1987.
[16] M. Ayinala and K. K. Parhi, ”FFT Architectures for Real-Valued Signals Based on Radix-$2^{3}$ and Radix-$2^{4}$ Algorithms,” in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 60, no. 9, pp. 2422-2430, Sept. 2013.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2020-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明