博碩士論文 106521010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:3.144.103.148
姓名 林太皇(Tai-Huang Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討
(Characteristics of InGaAs/InAIAs Single Photon Avalanche Diodes with Changing Charge Layer Doping Concentration)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討
★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討
★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析
★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 單光子累增二極體 (Single Photon Avalanche Diode, SPAD) 是利用元件操作在高於崩潰電壓之偏壓下,光子被吸收進而觸發衝擊游離機制,產生大量崩潰載子,因此可偵測極為微弱光。砷化銦鎵/砷化銦鋁單光子累增二極體以砷化銦鎵作為吸收層吸收光子,砷化銦鋁則作為累增層;其中,累增層材料由較早開始研究的磷化銦(InP)改為砷化銦鋁是因為它具備以下的特性:在相同的厚度下,崩潰電壓有較好的溫度穩定性;另砷化銦鋁有較高的累增觸發機率,預期能有較高的光偵測效率,故本研究採用砷化銦鋁作為累增層。
元件採正面收光且分離吸收層、漸變層、電荷層、累增層(separate absorption, grading, charge and multiplication, SAGCM)的平台式結構,優化電荷層的摻雜濃度,使得累增層的電場大於崩潰閥值同時又能讓吸收層被空乏產生擊穿效應。我們製作出兩種不同電荷層濃度的SPAD元件,在室溫下的崩潰電壓都約為47伏,擊穿電壓約為25伏;溫度係數在200 K以下斜率約為50 mV/K;SPAD元件以閘控模式電路操作以降低二次崩潰的影響;暗計數率在187.5 K下、超額偏壓0.1 %下約為5×106 counts per second,並且由暗計數變溫結果可得其活化能遠小於吸收層材料能隙中心,因此暗計數主要由側壁的表面缺陷所主導,這導因於元件保護層品質不佳,遂亦使得在100 μs的hold off time的操作下仍有45 %的二次崩潰機率;另透過調整電荷層摻雜濃度可在過量偏壓5 %的條件下使光偵測效率增加。論文最後亦透過崩潰訊號對時間以及元件電容-對時間之可靠度分析,探究元件特性欠佳之因素,其可歸因於崩潰載子被保護層缺陷捕捉從而使寄生電容上升,這會導致崩潰訊號不斷隨時間上升,造成極不穩定的計數率。
摘要(英) Single Photon Avalanche Diode (SPAD) is used to detect low power light via absorbing single photon and generating carriers to induce impact ionization process. The device under investigation is InGaAs/InAlAs SPAD using InGaAs as the absorption layer and InAlAs as the multiplication layer. InAlAs, as compared to InP, has the following characteristics of better temperature stability of breakdown voltage upon the same thickness of multiplication layer and theoretically higher photon detection efficiency due to higher avalanche trigger probability. As a result, we use InAlAs as the multiplication layer.
The SPADs with top-illuminated, mesa-type, and separation absorption, grading, charge and multiplication (SAGCM) structure are studied. To The proper control of the charge layer doping helps to fully deplete the absorption layer with high enough electric field and to avoid the tunneling current with low enough electric field. We fabricated SPADs with two different charge layer dopings and their current-voltage characteristics are measured. The breakdown voltage and punch-through voltage at room temperature for both SPADs are about 47 volts and 25 volts, respectively. The temperature coefficients of the breakdown voltages are around 50 mV / K below 200 K. SPAD is operated in a gated mode for suppressing the afterpulsing effect. The dark count rate (DCR) of 5×106 is measured at 187.5 K and excess bias of 0.1 %. From the curve of DCR versus temperature, the activation energy is obtained to be well below the half bandgap of InGaAs layer, which manifests that the DCR is mainly originated from the surface defect of sidewall due to the poor quality of passivation layer. This also results a higher afterpulsing probability of 45 % even under the hold-off time of 100 μs. In another hand, the photon detection efficiency can be improved by properly adjusting the charge layer doping. In the last, we study the performance degradation of SPAD by measuring the amplitude of avalanche signal and the device capacitance versus time. The increase of amplitude of avalanche signal and device capacitance with time is attributed to the trapping of avalanche carriers within the passivation layer, resulting very unstable count rate.
關鍵字(中) ★ 電荷層摻雜
★ 單光子累增二極體
★ 電容
關鍵字(英) ★ Charge layer doping
★ Single photon avalanche diodes
★ Capacitance
論文目次 圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1前言 1
1-1-1光電倍增管 2
1-1-2 III-V族材料之吸收波段 4
1-1-3累增光二極體 5
1-1-4單光子累增二極體 7
1-2研究動機與論文架構 8
第二章 單光子累增二極體 9
2-1元件物理 9
2-1-1累增二極體特性與操作模式 9
2-1-2累增崩潰 11
2-1-3 APD內部結構 14
2-2 SPAD操作與電路 18
2-2-1自由運行電路(Free-running mode circuit) 18
2-2-2閘控模式(Gated mode) 19
2-3元件特性參數 21
2-3-1暗計數來源 21
2-3-2光偵測效率 25
第三章 量測系統架構 26
3-1電流-電壓量測 27
3-2閘控模式暗量測 28
3-2-1暗計數率計算式 29
3-3閘控模式光量測 29
3-4二次崩潰量測 31
第四章 元件結構與製程 33
4-1結構設計 33
4-1-1結構內部設計 33
4-2光罩設計與外型 41
4-3元件製程 41
4-3-1晶圓切割及清洗 41
4-3-2曝光顯影 42
4-3-3濕蝕刻 43
4-3-4陰陽電極金屬沉積 44
4-3-5側壁保護 45
4-3-6打線墊沉積 46
第五章 量測結果與討論 48
5-1室溫電流-電壓量測 48
5-1-1元件I-V特性 48
5-2變溫及變頻量測 50
5-2-1變溫電流-電壓 50
5-2-2暗計數變溫、變頻量測 54
5-2-3二次崩潰量測 59
5-2-4光偵測效率量測 61
5-2-5崩潰訊號 63
5-2-6電容對時間量測及模擬 64
第六章 結論與未來展望 72
參考文獻 74
參考文獻 [1] Duka Erjon, “ISF Oxford University 2015.” 4th International Scientific Forum, vol. 12, 2015.
[2] T. Hakamata, ”Photomultiplier Tubes Basics and Application,” 3rd, vol. Hamamatsu Photonics K.K., 2006.
[3] W. Hallwachs, ”Ueber den Einfluss des Lichtes auf electrostatisch geladene Körper.” Annalen der Physik und Chemie, vol. 269, pp. 301- 312, 1888.
[4] H. Bruining, ”Physics and Application of Secondary Electron Emission,” 1954.
[5] H. Iams and B. Salzberg, ”The Secondary Emission Phototube,” Proceedings of the IRE, vol. 23, pp. 55-64, 1935.
[6] V. K. Zworykin, G. A. Morton, and L. Malter, ”The Secondary Emission Multiplier-A New Electronic Device, ” Proceedings of the IRE, vol. 24, pp. 351-375, 1936.
[7] V. K. Zworykin and J. A. Rajchman, ”The Electrostatic Electron Multiplier,” Proceedings of the IRE, vol. 27, pp. 558-566, 1939.
[8] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, ”Band parameters for III–V compound semiconductors and their alloys,” Journal of Applied Physics, vol. 89, pp.5815, No. 11, June 2001.
[9] A. Goetzberger, B. McDonald, R. H. Haitz, and R. M. Scarlett, ”Avalanche Effects in Silicon p—n Junctions. II. Structurally Perfect Junctions,” Journal of Applied Physics, vol.34, pp. 1591-1600, 1963.
[10] K. Nishida, K. Taguchi, and Y. Matsumoto, ”InGaAsP heterostructure avalanche photodiodes with high avalanche gain,” Applied Physics Letters, vol. 35, pp. 251-253, 1979.
[11] J. C. Campbell, A. G. Dentai, W. S. Holden, and B. L. Kasper, ”High- performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions,” Electronics Letters, vol. 19, pp. 818, 1983.
[12] Philip A. Hiskett, Gerald S. Buller, Alison Y. Loudon, and Jason Michael Smith, ”Performance and Design of InGaAs /InP Photodiodes for Single-Photon Counting at 1.55 μm,” Appl Opt, vol. 39, pp. 6818-6829, 20 December 2000.
[13] Mohamed Bourennane, Anders Karlsson, Juan Pena Ciscar, and Markus Mathes, ”Single-photon counters in the telecom wavelength region of 1550 nm for quantum information processing, ” Journal of Modern Optics, vol. 48, pp. 1983-1995, 2001.
[14] Goetzbergear, Mcdonaldb, Haitz, R. H., and Scarlet, R. M., 1963,
[15] Haithzr, H., 1965, J. Appl. Phys., 35, 1370; Haithzr, H., J. Appl. Phys., 36, 3123.
[16] Mcintyre, J., 1972, IEEE Trans. Electron Devices, Ed-19, 703; Webbp, P., and Mcintyre, J., and Conradji, 1974, RCA REview, 35, 234.
[17] Webbp, P., and Mcintyre, J., 1970, Bull. Am. Phys. Soc., Ser. II - 15, 813.
[18] Hektor Taavi Jsoeph Meier,”Design, Characterization and Simulation of Avalanche Photodiodes,” ETH Zurich, PhD dissertation, 2011.
[19] Y. L. Goh, D. J. Massey, A. R. J. Marshall, J. S. Ng, C. H. Tan, M. Hopkinson, and J. P. R. David, ”Excess Noise and Avalanche Multiplication in InAlAs, ” IEEE, vol. 14, pp. 998 - 1009, 29 July 2008.
[20] Souye Cheong Liew Tat Mun, Chee Hing Tan, Simon J. Dimler, Lionel J. J. Tan, Jo Shien Ng, Yu Ling Goh, and John P. R. David, ” A theoretical comparison of the breakdown behavior of In0.52Al0.48As and InP near-infrared single-photon avalanche photodiodes, ” Original Paper, vol. 45, pp. 566 - 571, May 2009.
[21] P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen, and M. Walther, ”Charge‐layer design considerations in SAGCM InGaAs/InAlAs avalanche photodiodes, ” Original Paper, pp. 925–929, 09 December 2015.
[22] B. Korzh, N. Walenta, T. Lunghi, N. Gisinr, and H. Zbinden, ”Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency, ” Applied Physics Letters, 104, pp. 081108, 2014.
[23] K. Sugihara, E. Yagyu, and Y. Tokuda, ”Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode,” Journal of Applied Physics, vol. 99, pp. 124502, 2006.
[24] Xiaoli Ji, Baiqing Liu, Hengjing Tang, Xuelin Yang, Xue Li, HaiMei Gong, Bo Shen, Ping Han, and Feng Yan, ”2.6 μm MBE grown InGaAs detectors with dark current of SRH and TAT,” AIP Advances, vol. 4, pp. 087135, 2014.
[25] Jun Zhang, Mark A Itzler, Hugo Zbinden and Jian-Wei Pan, ”Advances in InGaAs/InP single-photon detector systems for quantum communication, ” Light: Science & Applications, vol. 4, pp. 2047-7538, 2015.
[26] S. Tisa, A. Tosi, and F. Zappa, ”Fully-integrated CMOS single photon counter, ” OSA Publishing, vol. 15, pp. 2873-2887 , 2007.
[27] Daniel S. G. Ong, Majeed M. Hayat, J.P.R. David, and Jo Shien Ng, ”Sensitivity of High-Speed Lightwave System Receivers Using InAlAs Avalanche Photodiodes, ” IEEE Xplore, Lett. 23, pp. 233 - 235, March 2011.
[28] Lionel Juen Jin Tan, Member, IEEE et al, ”Temperature Dependence of Avalanche Breakdown in InP and InAlAs,” IEEE Journal of Quantum Electronics, vol. 46, No. 8, pp. 1153-1157, Aug. 2010.
[29] Yingjie Ma et al, ”Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors,” Opt. Express, vol. 24, pp. 7823-7834, 2016.
[30] Y.-J. Ma, Y.-G. Zhang, Y. Gu, X.-Y. Chen, L. Zhou, S.-P. Xi, et al, ”Low Operating Voltage and Small Gain Slope of InGaAs APDs With p-Type Multiplication Layer,” IEEE Photonics Technology Letters, vol. 27, pp. 661-664, 2015.
[31] Xiao Meng, ”InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials,” The University of Sheffield, PhD dissertation, August 2015.
[32] G. Karve et al, ”Geiger Mode Operation of an In0.53Ga0.47As–In0.52Al0.48As Avalanche Photodiode,” IEEE Journal of Quantum Electronics, vol. 39, pp. 1281-1286, November, 2003.
[33] Kai Zhao et al, ”Self-quenching and self-recovering InGaAs/InAlAs single photon avalanche detector,” Appl. Phys. Letters. vol. 93, pp. 153504, 2008.
[34] Jack Jia-Sheng Huang et al, ”Predictive Reliability Model of 10G/25G Mesa-Type Avalanche Photodiode Degradation,” Applied Physics Research, vol. 8, No.3, 2016.
[35] P. Kleinow, F. Rutz, R. Aidam, W. Bronner, H. Heussen and M. Walther, ” Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes,” Fraunhofer Institute for Applied Solid State Physics, vol. 71, pp. 298–302, 2015.
指導教授 李依珊 審核日期 2020-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明