博碩士論文 106323095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.116.23.114
姓名 趙健傑(Jian-Jie Jhao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以氨和氫為燃料之加壓平板和鈕扣型固態氧化物燃料電池性能量測
(Measurements of Pressurized Planar- and Button-type Solid Oxide Fuel Cells Using Ammonia and Hydrogen Fuels)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究使用已建立之高溫高壓雙腔體固態氧化物燃料電池(SOFC)實驗測試平台,搭配自製鈕扣型和平板型單電池測試載具,使用陽極支撐全電池片(Anode-Supported Cell, ASC)量測其電池性能曲線與電化學阻抗頻譜圖,探討改變溫度、燃料濃度、壓力、流率對電池功率密度之影響。本論文包含三個部分:(1)使用鈕扣型全電池,測試氨於四個不同操作溫度:700、750、800、850oC與三種不同濃度:高濃度(75/25 sccm H2/N2和50 sccm NH3)、中濃度(60/40 sccm H2/N2和40/20 sccm NH3/N2)和低濃度(45/55 sccm H2/N2和30/40 sccm NH3/N2)條件下之溫度和濃度效應;(2)使用平板型全電池,在兩種不同總流率(900/1800 sccm)和溫度850oC,每個流率在三個操作壓力(1、3、5 atm)條件下,其壓力和流率效應對電池功率密度之影響;(3)建置大面積平板型100 mm x 100 mm SOFC載具,並量測操作溫度在750oC之電池性能與阻抗頻譜。第一部分結果顯示,提高操作溫度、燃料濃度均能提高電池性能,這是因為增加溫度會使歐姆阻抗降低,且能使電解質層的離子傳導率與電極之電子傳導率上升。增加濃度能使阻抗頻譜之低頻濃度極化阻抗減少,而降低極化阻抗可使電池性能提升。第二部分結果顯示,增加壓力能有效提升電池性能,而當電池獲得充足燃料時,再增加燃料流率並不會使電池性能增加。加壓會造成流道中燃氣流速下降,因質量守恆,密度增加,流速減少,氣體經特製加熱蛇型彎管可獲得均勻加熱,且加壓可增加氣體擴散效率,故加壓能有效提升電池性能。第三部分為新建置的大面積SOFC平板型100 mm x 100 mm載具,它與50 mm x 50 mm平板型載具之構置相同,均由陰、陽極載具、集電層、以及陶瓷材料所加工的流道板所組構而成,我們測試其在操作溫度750oC之電池性能,結果顯示使用氨為燃料其電池性能幾乎與氫燃料相近。本研究成果對於氨SOFC之基礎知識有重要之助益。
摘要(英) This thesis applies an established high-pressure and high-temperature solid oxide fuel cell (SOFC) testing platform to measure the cell performance and electrochemical impedance spectroscopy (EIS) of button- and planar-type anode-supported cell (ASC). We investigate effects of the temperature (T), fuel concentration, pressure (p), and the flow rate on the cell power density. There are three parts in this thesis: (1) The effects of temperature and concentration on the cell performance of the button ASC using both hydrogen and ammonia fuels under various temperature conditions (700,750,800,850oC) and different fuel concentrations varying from high concentration (75/25 sccm H2/N2 ; 50 sccm NH3), and middle concentration (60/40 sccm H2/N2 ; 40/20 sccmNH3/N2) to low concentration (45/55 sccm H2/N2 ; 30/40 sccm NH3/N2) ; (2) the measurements of the planar ASC performance using two different total flow rates (900/1800 sccm) at a temperature of 850oC, each flow rate including three different operating pressures (1,3,5 atm); (3) a preliminary test for a large planar (100 mm x 100 mm) SOFC at 1 atm and 750oC to measure its cell performance and EIS data. Results show that the cell performance increases with increasing T as well as increasing the fuel concentration. This is because the ohmic polarization decreases with increasing T that increases the ionic conductivity of the electrolyte layer and the electron conductivity of the electrode. Increasing the fuel concentration can reduce the impedance of arc in the impedance spectra, thus improving the cell performance. The cell performance increases with increasing p. When the cell is supplied by sufficient fuel, a further increase of the fuel flow cannot increase the cell performance. Pressurization decreases the gas flow velocity in the flow channel, because of the conservation of mass, where the density increases with pressure resulting in a decrease of the flow velocity. Fuel can be uniformly heated when using a specially-designed serpentine heating pipe system. Besides, pressurization increases the efficiency of gas diffusion and thus it can increase the cell performance. A new SOFC large-area planar 100 mm x 100 mm test rig is established, having the same design of 50 mm x 50mm planar SOFC, which is consisted of cathode and anode carriers, two collector layers, and ceramic material flow distributors. The measured of cell performance of the large-area planar SOFC at 750oC indicates the successful operation of such cell. Furthermore, the cell performance using ammonia as a fuel is almost the same as that using hydrogen as a fuel. Finally, these results should be useful to our basic understanding of ammonia SOFC.
關鍵字(中) ★ 電池性能和電化學阻抗頻譜
★ 壓力
★ 溫度
★ 濃度
★ 流率效應
★ 大面積SOFC平板型100 mm x 100 mm載具
關鍵字(英) ★ Cell performance and electrochemical impedance spectroscopy
★ effects of pressure
★ temperature
★ concentration
★ and mass flow rates
★ large-area planar 100 mm x 100 mm test rig
論文目次 目錄----IX
表目錄--XI
圖目錄--XII
符號說明-XIV
第一章 前言----- 1
1.1研究動機----- 1
1.2 問題所在---- 2
1.3 解決方法---- 3
1.4 論文綱要---- 4
第二章 燃料電池之簡介與文獻回顧---5
2.1 SOFC之簡介------------------5
2.2 SOFC運作原理與極化現象-------7
2.2.1 歐姆極化-- 9
2.2.2活化極化--- 10
2.2.3濃度極化--- 11
2.3電化學阻抗頻譜與等效電路模組-- 12
2.4 SOFC相關文獻探討-----15
2.4.1改變陽極材料(見表2.1)-------17
2.4.2改變操作條件--------19
2.4.3 壓力效應文獻------ 22
第三章 實驗設備與量測方法 35
3.1高溫高壓SOFC性能測試平台------35
3.2 實驗流程與量測操作參數設定----38
第四章 結果與討論--------46
4.1 氫氣和氨氣於不同溫度之性能與阻抗頻譜比較------ 46
4.2 氫氣和氨氣於不同溫度下改變濃度之比較---------- 47
4.3 加壓效應與流率效應之影響比較------------------48
4.4 平板型SOFC大面積100mm x 100mm 之載具建置----- 49
第五章 結果與未來工作----64
5.1結論-64
未來工作-65
參考文獻-66

參考文獻 [1] W.H. Kan, A.J. Samson, V. Thangadurai, Trends in electrode development for next generation solid oxide fuel cells, J. Mater. Chem. A. 4 (2016) 17913-17932.
[2] P. Dockrill, It’s Official: Atmospheric CO2 Just Exceeded 415 ppm For The First Time in Human History, 2019
(https://www.sciencealert.com/it-s-official-atmospheric-co2-just-exceeded-415-ppm-for-first-time-in-human-history).
[3] 吳佩真,加壓鈕扣型陽極支撐SOFC實驗量測與活化和濃度過電位分析計算,國立中央大學碩士論文,2013
(https://hdl.handle.net/11296/bj6x23).
[4] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurementand quality assurance at FZJ, J. Power Sources 171 (2007) 169-178.
[5] N. Mahato, A. Banerjee, A. Gupta, S. Omar, K. Balani, Progress in material selection for solid oxide fuel cell technology: A review, Prog. Mater. Sci. 72 (2015) 141-337.
[6] K. Wanga, D. Hissela, M.C. Péra, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, J. Saarinene, A Review on solid oxide fuel cell models, Int. J. Hydrog. Energy 12 (2011) 7212-7228.
[7] 左峻德,SOFC技術標準與安規及應用市場研析, 行政院原子能委員會委託研究計畫研究報告,2001。
[8] 洪永杰,固態氧化物燃料電池專利檢索與分析報告,元智大學,2005。
[9] Y. Itagaki, J. Cui, N. Ito, H. Aono, H. Yahiro, Effect of Ni-loading on Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cell, J. Ceram. Soc. Japan 126 (2018) 870-876.
[10] M. Hashinokuchi, M. Zhang, T. Doi, M. Inaba, Enhancement of anode activity and stability by Cr addition at Ni/Sm-doped CeO2 cermet anodes in NH3-fueled solid oxide fuel cells, Solid State Ionics 319 (2018) 180-185.
[11] M. Hashinokuchi, R. Yokochi, W. Akimoto, T. Doi, M. Inaba, J. Kugai, Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells, Solid State Ionics 285 (2016) 222-226.
[12] W. Akimoto, T. Fujimoto, M. Saito, M. Inaba, H. Yoshida, Toru Inagaki, Ni–Fe/Sm-doped CeO2 anode for ammonia-fueled solid oxide fuel cells, Solid State Ionics 256 (2014) 1-4.
[13] S.C. Singhal, K. Kendal, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier Technology, New York, 2003.
[14] Y. Patcharavorachot, A. Arpornwichanop, A. Chuachuensuk, Electrochemical study of a planar solid oxide fuel cell: Role of support structures, J. Power Sources 177 (2008) 254 - 261.
[15] S.H. Chan, K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness, J. Power Sources 93 (2001) 130-140.
[16] S.H. Chan, Z.T. Xia, Polarization effects in electrolyte/electrode-supported solid oxide fuel cells, J. Appl. Electrochem. 32 (2002) 339-347.
[17] F. Miao, Impact on fuel transport efficiency in anode of planar solid oxide fuel cells, Int. J. Electrochem. Sci 8 (2013) 11814-11822
[18] G. Cinti, G. Discepoli, E. Sisania, U. Desideri, SOFC operating with ammonia: Stack test and system analysis, Int. J. Hydrog. Energy 41 (2016) 13583-13590
[19] N. Minha, J. Mizusakib, S. C. Singhal, Advances in solid oxide fuel cells: Review of progress through three decades of the international symposia on solid oxide fuel cells, J. Electrochem. Soc. 78 (2017) 63-67
[20] M. Xua, T. Li, M. Yang, M. Andersson, Solid oxide fuel cell interconnect design optimization considering the thermal stresses, Sci. Bull. 61 (2016) 1333-1344
[21] G. Meng, C. Jiang, J. Ma, Q. Ma, X. Liu, Comparative study on the performance of a SDC-based SOFC fueled by ammonia and hydrogen, J. Power Sources 173 (2007) 189-193.
[22] M.B. Mogensen, M. Chen, H.L. Frandsen, C. Graves, J.B. Hansen, K. V. Hansen, A. Hauch, T. Jacobsen, S.H. Jensen, T.L. Skafte, X. Sun, Reversible solid-oxide cells for clean and sustainable energy, Clean Energy 3 (2019) 175-201
[23] A. Leonide, Y. Apel, E.I. Tiffee, SOFC modeling and parameter identification by means of impedance spectroscopy, J. Electrochem. Soc. 19 (2010) 81-109.
[24] J. Larminie, A. Dicks, Fuel Cell Systems Explained, Oxford Brookes University, UK, 2003.
[25] M. Henke, J. Kallo, K.A. Friedrich, W.G. Bessler, Influence of pressurisation on SOFC performance and durability: A theoretical study, Fuel Cells 11 (2011) 581-591.
[26] W.G. Bessler, S. Gewies, Gas concentration impedance of solid oxide fuel cell anodes: Channel geometry, J. Electrochem. Soc. 154 (2007) B548-B559.
[27] J.C. Njodzefon, D. Klotz, A. Kromp, A. Weber, E.I. Tiff´ee, Electrochemical modeling of the current-voltage characteristics of an SOFC in fuel cell and electrolyzer operation modes, J. Electrochem. Soc. 160 (2013) F313-F323.
[28] M. Ni, M.K.H. Leung, D.Y.C. Leung, Parametric study of solid oxide fuel cell performance, Energy Convers. and Manag. 48 (2007) 1525-1535.
[29] S. Primdahl, M. Mogensen, Gas conversion impedance: A test geometry effect in characterization of solid oxide fuel cell anodes, J. Electrochem. Soc. 145 (1998) 2431-2438.
[30] S. Yadav, M. K. Singh, K. Sudhakar, Modelling of solid oxide fuel cell- A review, J. Appl. Sci. Eng. 6 (2015) 2229-5518.
[31] S. Ahn, J. Tatarchuk, Air electrode: Identification of intraelectrode rate phenomena via ac impedance, J. Electrochem. Soc. 142 (1995) 4169-4175.
[32] T.E Springer, T.A. Zawodzinski, M.S Wilson, S. Gottesfeld. Characterization of polymer electrolyte fuel cell using impedance spectroscopy, J. Electrochem. Soc. 143 (1996) 587-599.
[33] J.R. MacDonald, Impedance Spectroscopy, Emphasizing Solid Materials and Systerms, Wiley Interscience, 1987.
[34] J. Wang, Analytical Electrochemistry, 3rd Ed., John Wiley & Sons, Inc., 2006.
[35] J. B. Jorcin, M. E. Orazem, N. P´eb`ere, B. Tribollet, CPE analysis by local electrochemical impedance spectroscopy, Electrochimica. Acta. 51 (2006) 1473-1479.
[36] C.H. Kim, S.I. Pyun, J.H. Kim, An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations, Electrochimica Acta. 48 (2003) 3455-3463.
[37] A. Nakajo, Z. Wuillemin, P. Metzger, S. Diethelm, G. Schiller, J.V. Herlea, D. Favrata, Electrochemical model of solid oxide fuel cell for simulation at the stack scale, J. Electrochem. Soc. 158 (2011) B1083-B1101
[38] J. Wang, Realizations of generalized Warburg impedance with RC ladder networks and transmission lines, J. Electrochem. Soc. 134 (1987) 1915-1920.
[39] 洪藝庭,加壓型固態氧化物燃料電池之性能和穩定性量測,國立中央大學碩士論文,2018
(http://ir.lib.ncu.edu.tw/handle/987654321/79518).
[40] C. Zamfirescu, I. Dincer, Using ammonia as a sustainable fuel, J. Power Sources 185 (2008) 459-465.
[41] J.O. Jensen, A.P. Vestbø, Q. Li, N.J. Bjerrum, The energy efficiency of onboard hydrogen storage, J. Alloys Compd. 446-447 (2007) 723-728.
[42] S.H. Jensen, X. Sun, S.D. Ebbesen, R. Knibbe, M. Mogensen, Hydrogen and synthetic fuel production using pressurized solid oxide electrolysis cells, Int. J. Hydrog. Energy 35 (2010) 9544-9549.
[43] H. Sumi, Y.H. Lee, H. Muroyama, T. Matsui, M. Kamijo, S. Mimuro, M. Yamanaka, Y. Nakajima, K. Eguchi, Effect of carbon deposition by carbon monoxide disproportionation on electrochemical characteristics at low temperature operation for solid oxide fuel cells, J. Power Sources 196 (2011) 4451-4457.
[44] V.A. Restrepo, J.M. Hill, Carbon deposition on Ni/YSZ anodes exposed to CO/H2 feeds, J. Power Sources 195 (2010) 1344-1351.
[45] V. Subotic, B. Stoeckl, V. Lawlor, J. Strasser, H. Schroettner, C. Hochenauer, Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches, Appl. Energy 222 (2018) 748-761.
[46] S. Savoie, T.W. Napporn, B. Morel, M. Meunier, R. Roberge, Catalytic activity of Ni-YSZ anodes in a single-chamber solid oxide fuel cell reactor, J. Power Sources 196 (2011) 3713-3721.
[47] J. Andersson, J. Lundgren, Techno-economic analysis of ammonia production via integrated biomass gasification, Appl. Energy 130 (2014) 484-490.
[48] A. Fuertea, R.X. Valenzuelaa, M.J. Escuderoa, L. Daza, Ammonia as efficient fuel for SOFC, J. Power Sources 192 (2009) 170-174.
[49] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behavior of Ni-based cermet anode for ammonia-fueled SOFCs, ECS Trans. 68 (2015) 2751-2762.
[50] S.S. Shy, S.C. Hsieh, H.Y. Chang, A pressurized ammonia-fueled anode-supported solid oxide fuel cell: Power performance and electrochemical impedance measurements, J. Power Sources 396 (2018) 80-87.
[51] A.F.S. Molouk, J. Yang, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells, J. Power Sources 305 (2016) 72-79.
[52] J. Yang, T. Akagi, T. Okanishi, H. Muroyama, T. Matsui, and K. Eguchi, Catalytic influence of oxide component in Ni‐based cermet anodes for ammonia‐fueled solid oxide fuel cells, Fuel cells 15 (2015) 390-397.
[53] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, A stability study of Ni/Yttria-stabilized Zirconia anode for direct ammonia solid oxide fuel cells, ACS Appl. 7 (2015) 28701-28707.
[54] A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and catalytic behaviors of Ni–YSZ Anode for the direct utilization of ammonia fuel in solid oxide fuel cells, J. Electrochem. Soc. 162 (2015) 1268-1274.
[55] J. Zhang, H.Y. Xu, W.Z. Li, Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect, Appl. Catal. A Gen. 296 (2005) 257-267.
[56] M.C.J. Bradford, P.E. Fanning, M.A. Vannice, Kinetics of NH3 decomposition over well dispersed Ru, J. Catal. 172 (1997) 479-484.
[57] A. Hashimoto, K. Kosaka, N. Matake, A. Yamashita, Y. Kobayashi, T. Kabata, K. Tomida, Anode reaction in pressurized solid oxide fuel cells, J. Power Energy Systems 4 (2010) 348-360.
[58] K. Okura, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Promotion effect of rare-earth elements on the catalytic decomposition of ammonia over Ni/Al2O3 catalyst, Appl. Catal. A Gen. 505 (2015) 77-85.
[59] K. Miyazaki, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Development of Ni-Ba(Zr,Y)O3 cermet anodes for direct ammonia-fueled solid oxide fuel cells, J. Power Sources 365 (2017) 148-154.
[60] T. Schober, H.G. Bohn, Water vapor solubility and electrochemical characterization of the high temperature proton conductor BaZr0.9Y0.1O2.95, Solid State Ion. 127 (2000) 351-360.
[61] J. Yang, A.F.S. Molouk, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3−δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells, J. Am. Chem. Soc. l7 (2015) 7406-7412.
[62] M. Henke, C. Willich, C. Westner, F. Leucht, R. Leibinger, J. Kallo, K.A. Friedrich, Effect of pressure variation on power density and efficiency of solid oxide fuel cells, Electrochim Acta 66 (2012) 158-163.
[63] R.O. Hayre, S.W. Cha, W. Colella, F.B. Prinz, Fuel Cell Fundamentals, 2nd Ed., John Wiley & Sons Inc., New York, 2009.
[64] W.L. Lundberg, S.E. Veyo, M.D. Moeckel, A high-efficiency solid oxide fuel cell hybrid power system using the mercury 50 advanced turbine systems gas turbine, J. Eng. Gas Turbines Power 125 (2002) 51-58.
[65] S.B. Lee, T.H. Lim, R.H. Song, D.R. Shin, S.K. Dong, Development of a 700W anode-supported micro-tubular SOFC stack for APU applications, Int. J. Hydrog. Energy 33 (2008) 2330-2336.
[66] N. M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100W anode supported micro-tubular SOFC stack, J. Power Sources 145 (2005) 428-434.
[67] D. Cui, L. Liu, Y. Dong, M. Cheng, Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling, J. Power Sources 174 (2007) 246-254.
[68] 梁俊德,加壓型SOFC碳沉積之實驗研究,國立中央大學碩士論文,2015 (https://hdl.handle.net/11296/tb6ujy).
[69] L.A. Chick, O.A. Marina, C.A. Coyle, E.C. Thomsen, Effects of temperature and pressure on the performance of a solid oxide fuel cell running on steam reformate of kerosene, J. Power Sources 236 (2012) 1-9.
[70] M. Stelter, A. Reinert, B.E. Mai, M. Kuznecov, Engineering aspects and hardware verification of a volume producible solid oxide fuel cell stack design for diesel auxiliary power units, J. Power Sources 154 (2006) 448-455.
[71] M. M. Hussain, X. Lia, I. Dincer, A general electrolyte–electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, J. Power Sources 189 (2009) 916-928.
[72] 李信宏,棋盤式雙極板尺寸流道效應對固態氧化物燃料電池性能之影響,國立中央大學碩士論文,2010
(https://hdl.handle.net/11296/w3zqzm).
[73] S. C. Singal, Solid oxide fuel cell for stationary, mobile, and military applications, Solid State Ion. 152 (2002) 405-410.
[74] M. Mogensen, K.V. Jensen, M. J. Jørgensen, S. Primdahl, Progress in understanding SOFC electrodes, Solid State Ion. 150 (2003) 123-129.
[75] Toyota Researching Natural Gas for Fuel Cells, Aiming for Zero Emissions Power at Its Production Plants (2017).
https://www.motortrend.com/news/toyota-researching-natural-gas-fuel-cells/
[76] K. Tomida, K. Kodo, D.Kobayashi, Y. Kato, S. Suemori, Y. Urashita, Efforts toward introduction of SOFC-MGT hybrid system to the market, Mitsubishi Heavy Ind. Tech. Rev. 55 (2018) 1-5.
指導教授 施聖洋(Shenq-Yang Shy) 審核日期 2020-1-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明