參考文獻 |
[1] https://km.twenergy.org.tw/Data/db_more?id=2529
[2] https://www.audi.com/corporate/en/company.html
[3] http://www.boeing.com/
[4] A. B. Stambouli, E. Traversa, “Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy”, Renew. Sustain. Energy Rev., Vol. 6, pp. 433-455, 2002.
[5] 黃鎮江, 燃料電池, Vol. 3, 滄海書局, 2008.
[6] Z. Shao, S. M. Halle, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, Vol. 431, pp. 255-258, 2004.
[7] S. C. Singhal, K. Kendall, “High-temperature solid oxide fuel cells: fundamentals, design and applications”, Elsevier, 2003.
[8] J. W. Fergus, “Electrolytes for solid oxide fuel cells”, J. Power Sources, Vol. 162, pp. 30-40, 2006.
[9] I. M. Hung, H. W. Peng, S. L. Zheng, C. P. Lin, J. S. Wu, “Phase stability and conductivity of Ba1−ySryCe1−xYxO3−δ solid oxide fuel cell electrolyte”, J. Power Sources, Vol. 193, pp. 155-159, 2009.
[10] J. Larminie, A. Dicks, “Fuel cell systems explained”, Second Edition ed: John Wiley & Sons, Ltd; 2003.
[11] S. Mclntosh, R. J. Gorte, “Direct hydrocarbon solid oxide fuel cells”, Chem. Rev., Vol. 104, pp. 4845-4866, 2004.
[12] C. Xia, M. Liu, “Novel cathodes for low‐temperature solid oxide fuel cells”, Adv. Mat., Vol. 14, pp. 521-523, 2002.
[13] S. Primdahl, “Nickel/yttria-stabilised zirconia cermet anodes for solid oxide fuel cells”, Netherlands: University of Twente, The Netherlands; 1999.
[14] L. Bi, E. H. Da’as, S. P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochem. Commun., Vol. 80, pp. 20-23, 2017.
[15] L. Malavasi, C. J. Fisher, M. S. Islam, “Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features”, Chem. Soc. Rev., Vol. 39, pp. 4370-4387, 2010.
[16] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chem. Soc. Rev., Vol. 39, pp. 4355-4369, 2010.
[17] H. Iwahara, “Oxide-ionic and protonic conductors based on perovskite-type oxides and their possible applications”, Solid State Ionics, Vol. 52, pp. 99-104, 1992.
[18] H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, “Prospect of hydrogen technology using proton-conducting ceramics”, Solid State Ionics, Vol. 168, pp. 299-310, 2004.
[19] H. Iwahara, H. Uchida, K. Ono, K. Ogaki, “Proton conduction in sintered oxides based on BaCeO3”, J. Electrochem. Soc., Vol. 135, pp. 529-533, 1988.
[20] K. D. Kreuer, “Proton-conducting oxide”, Annu. Rev. Mater. Res., Vol. 33, pp. 333-359, 2003.
[21] Y. M. Guo, Y. Lin, H. A. Shi, R. Ran, Z. P. Shao, “A high electrochemical performance proton conductor electrolyte with CO2 tolerance”, Chinese J. Catal., Vol. 30, pp. 479-481, 2009.
[22] Y. Okuyama, N. Ebihara, K. Okuyama, Y. Mizutani, “Improvement of protonic ceramic fuel cells with thin film BCZY electrolyte”, ECS Trans., Vol. 68, pp. 2545-2553, 2015.
[23] G. S. Reddy, R. Bauri, “Y and In-doped BaCeO3-BaZrO3 solid solutions: chemically stable and easily sinterable proton conducting oxides”, J. Alloys Compd., Vol. 688, pp. 1039-1046, 2016.
[24] S. Gopalan, A. V. Virkar, “Thermodynamic stabilities of SrCeO3 and BaCeO3 using a molten salt method and galvanic cells”, J. Electrochem. Soc., Vol. 140, pp. 1060-1065, 1993.
[25] F. L. Chen, O. T. Sørensen, G. Y. Meng, D. K. Peng, “Chemical stability study of BaCe0.9Nd0.1O3-δ high-temperature proton-conducting ceramic”, J. Mater. Chem., Vol. 7, pp. 481-485, 1997.
[26] Y. M. Guo, Y. Lin, R. Ran, Z. P. Shao, “Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications”, J. Power Sources, Vol. 193, pp. 400-407, 2009.
[27] A. Afif, N. Radenahmad, C. M. Lim, M. I. Petra, M. Aminullslam, S. M. H. Rahman, S. Eriksson, A. K. Azad, “Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3 (x=0.05, 0.1, 0.15, 0.2 & 0.25)”, Int. J. Hydrogen Energy, Vol. 41, pp. 11823-11831, 2015.
[28] H. S. Spacil. “Electrical device including nickel-containing stabilized zirconia electrode”, US patent 3, 503, 8091970.
[29] C. W. Tanner, K. Z. Fung, A. V. Virkar, “The effect of porous composite electrode structure on solid oxide fuel cell performance: I. theoretical analysis”, J. Electrochem. Soc., Vol. 144, pp. 21-30, 1997.
[30] R. J. Gorte, J. M. Vohs, “Nanostructured anodes for solid oxide fuel cells”, Curr. Opin. Colloid Interface Sci., Vol. 14, pp. 236-244, 2009.
[31] E. Fabbri, D. Pergolesi, E. Traversa, “Electrode materials: A challenge for the exploitation of protonic solid oxide fuel cells”, Sci. Technol. Adv. Mater., Vol. 11, pp. 044301, 2010.
[32] T. Matsui, R. Kishida, H. Muroyama, K. Eguchi, “Comparative study on performance stability of Ni-oxide cermet anodes under humidified atmospheres in solid oxide fuel cells”, J. Electrochem. Soc., Vol. 159, pp. F456-F460, 2012.
[33] S. M. Fang, K. Brinkman, F. L. Chen, “Unprecedented CO2 promoted hydrogen permeation in Ni-BaZr0.1Ce0.7Y0.1Yb0.1O3−δ membrane”, Appl. Mater. Interfaces, Vol. 6, pp. 725-730, 2014.
[34] G. C. Mather, F. M. Figueiredo, J. R. Jurado, J. R. Frade, “Synthesis and characterization of cermet anodes for SOFCs with a proton-conducting ceramic phase”, Solid State Ionics, Vol. 162, pp. 115-120, 2003.
[35] W. G. Coors, A. Manerbino, “Characterization of composite cermet with 68 wt% NiO and BaCe0.2Zr0.6Y0.2O3−δ”, J. Membr. Sci., Vol. 376, pp. 50-55, 2011.
[36] L. Bi, E. Fabbri, Z. Sun, E. Traversa, “BaZr0.8Y0.2O3−δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method”, J Electrochem. Soc., Vol. 158, pp. B797-B803, 2011.
[37] N. Narendar, G. C. Mather, P. A. N. Dias, D. P. Fagg, “The importance of phase purity in Ni-BaZr0.85Y0.15O3−δ cermet anodes–novel nitrate-free combustion route and electrochemical study”, RSC Adv., Vol. 3, pp. 859-869, 2013.
[38] L. Chevallier, M. Zunic, V. Esposito, E. D. Bartolomeo, E Traversa, “A wet-chemical route for the preparation of Ni-BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs”, Solid State Ionics, Vol. 180, pp. 715-720, 2009.
[39] B. H. Rainwater, M. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, Int. J. Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[40] L. Yang, C. Zuo, S. Wang, Z. Cheng, M. Liu. “A novel composite cathode for low-temperature SOFCs based on oxide proton conductors”, Adv. Mater., Vol. 20, pp. 3280-3283, 2008.
[41] H. S. Song, S. Lee, S. H. Hyun, J. Kim, J. Moon, “Compositional influence of LSM-YSZ composite cathodes on improved performance and durability of solid oxide fuel cells”, J. Power Sources, Vol. 187, pp. 25-31, 2009.
[42] R. Peng, T. Wu, W. Liu, X. Liu, G. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, J. Mater. Chem, Vol. 20, pp. 6218-6225, 2010.
[43] J. Dailly, S. Fourcade, A. Largeteau, F. Mauvy, J. C. Grenier, M. Marrony, “Perovskite and A2MO4-type oxides as new cathode materials for protonic solid oxide fuel cells”, Electrochim. Acta, Vol. 55, pp. 5847-5853, 2010.
[44] E Antolini, “Carbon supports for low temperature fuel cell catalysts”, Appl. Cat. B: Environ., Vol. 88, pp. 1-24, 2009.
[45] J. S. Yu, S. Kang, S. B. Yoon, G. Chai, “Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter”, J. American Chem. Soc., Vol. 124, pp. 9382-9383, 2002.
[46] E. P. Ambrosio, C. Francia, M. Manzoli, N. Penazzi, P. Spinelli, “Platinum catalyst supported on mesoporous carbon for PEMFC”, Int. J. Hydrogen Energy, Vol. 33, pp. 3142-3145, 2008.
[47] S. Q. Song, Y. R. Liang, Z. H. Li, Y. Wang, R. W. Fu, D. C. Wu, P. Tsiakaras, “Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions”, Appl. Catal. B, Vol. 98, pp. 132-137, 2010.
[48] L. Calvillo, M. Gangeri, S. Perathoner, G. Centi, R. Moliner, M. Lazaro, “Synthesis and performance of platinum supported on ordered mesoporous carbons as catalyst for PEM fuel cells: Effect of the surface chemistry of the support”, Int. J. Hydrogen Energy, Vol. 36, pp. 9805-9814, 2011.
[49] J. Tang, J. Liu, N. L. Torad, T. Kimura, Y. Yamauchi, “Tailored design of functional nanoporous carbon materials toward fuel cell applications”, Nano Today, Vol. 9, pp. 305-323, 2014.
[50] H. Liu , C. Song, L. Zhang, J. J. Zhang, H. J. Wang, D. P. Wilkinson, “A review of anode catalysis in the direct methanol fuel cell”, J. Power Source, Vol. 155, pp. 95-110, 2006.
[51] T. Matsui, T. Okanishi, K. Fujiwara, K. Tsutsui, R. Kikuchi, T. Takeguchi, K. Eguchi, “Effect of reduction oxidation treatment on the catalytic activity over tin oxide supported platinum catalysts”, Sci. Tech. Adv. Mat., Vol. 7, pp. 524-530, 2006.
[52] Y. Shao G. Yin, Y. Gao, “Understanding and approaches for the durability issues of Pt based catalysts for PEM fuel cell”, J. Power Source, Vol. 171, pp. 558-566, 2007.
[53] M. Nakada, A. Ishihara, S. Mitsushima, N. Kamiya, K. I. Ota, “Effect of tin oxides on oxide formation and reduction of platinum particles”, Electrochem. Solid State Letters, Vol. 10, pp. 1-4, 2007.
[54] S. Beyhan, N. E. Şahin, S. Pronier, J. M. Léger, F. Kadırgan, “Comparison of oxygen reduction reaction on Pt/C, Pt-Sn/C, Pt-Ni/C, and Pt-Sn-Ni/C catalysts prepared by Bönnemann method: A rotating ring disk electrode study”, Electrochim. Acta, Vol. 151, pp. 565-573, 2015.
[55] S. M. Haile, G. Staneff, K. H. Ryu, “Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites”, J. Mater. Sci., Vol. 36, pp. 1149-1160, 2001.
[56] D. Medvedev, J. Lyagaeva, S. Plaksin, A. Demin, P. Tsiakaras, “Sulfur and carbon tolerance of BaCeO3-BaZrO3 proton-conducting materials”, J. Power Sources, Vol. 273, pp. 716-723, 2015.
[57] G. Robert, A. Kaiser, E. Batawi, “In: Proceedings of the 6th European SOFC Forum”, Lucerne, Switzerland 2004, 193.
[58] T., C. Chung, P. H. Larsen, M. Mogensen, “The mechanism behind redox instability of anodes in high-temperature SOFCs”, J. Electrochem. Soc., Vol. 152, pp. A1286-A2192, 2005.
[59] Y. Guo, R. Ran, Z. Shao, A novel way to improve performance of proton-conducting solid-oxide fuel cells through enhanced chemical interaction of anode components, Int. J. Hydrogen Energy, Vol. 36, pp. 1683-1691, 2011.
[60] A. K. Baral, S. Choi, B. K. Kim, J. H. Lee, Processing and characterizations of a novel proton-conducting BaCe0.35Zr0.50Y0.15O3−δ eElectrolyte and its nickel-based anode composite for anode-supported IT-SOFC, Mater. Renew. Sustain. Energy, Vol. 3, pp. 1-9, 2014.
[61] D. Sarantaridis, R. A. Rudkin, A. Atkinson, “Oxidation failure modes of anode-supported solid oxide fuel cells”, J. Power Sources, Vol. 180, pp. 704-710, 2008.
[62] D. Waldbilli, A. Wood, D. G. Ivey, “Enhancing the redox tolerance of anode-supported SOFC by microstructural modification”, J. Electrochem. Soc., Vol. 154, pp. B133-B138, 2007.
[63] A. Faes, A. H. Wyser, A. Zryd, J. V. Herle, “A review of redox cycling of solid oxide fuel cells anode”, Membranes, Vol. 2, pp. 585-664, 2012.
[64] W. G. Coors, “Protonic ceramic steam-permeable membranes”, Solid State Ionics, Vol. 178, pp. 481-485, 2007.
[65] M. Kubota, T. Okanishi, H. Muroyama, T. Matsui, K. Eguchi, “Microstructural evolution of Ni-YSZ cermet anode under thermal cycles with redox treatments”, J. Electrochem. Soc., Vol. 162, pp. F380-F386, 2015.
[66] N. Nasani, Z. J. Wang, M. G. Willinger, A. A. Yaremchenko, D. P. Fagg, In-situ redox cycling behavior of Ni-BaZr0.85Y0.15O3−δ cermet anodes for protonic ceramic fuel cells, Int. J. Hydrogen Energy, Vol. 39, pp. 19780-19788, 2014.
[67] L. Jia, Z. Lu, J. P. Miao, Z. G. Liu, G. Q. Li, W. H. Su “Effects of pre-calcined YSZ powders at different temperatures on Ni-YSZ anodes for SOFC”, J. Alloys Compd., Vol. 414, pp. 152-157, 2006.
[68] S. Z. Wang, Q. He, M. L. Liu, “Promising Ni-Fe-LSGMC anode compatible with lanthanum gallate electrolyte”, Electrochim. Acta, Vol. 54, pp. 3872-3876, 2009.
[69] M. Chen, B. H. Kim, Q. Xu, B. G. Ahn, “Preparation and electrochemical properties of Ni-SDC thin films for IT-SOFC anode”, J. Mem. Sci., Vol. 334, pp. 138-147, 2009.
[70] L. O. O. D. Costa, A. M. D. Silva, F. B. Noronha, L. V. Mattos, “The study of the performance of Ni supported on gadolinium doped Ceria SOFC anode on the steam reforming of ethanol”, Int. J. Hydrogen Energy, Vol. 37, pp. 5930-5939, 2012.
[71] N. K. Hoa, H. A. Rahman, M. R. Somalu, “Effects of NiO loading and pre-calcination temperature on NiO-SDCC composite anode power for low-temperature solid oxide fuel cells, Ceram. Silikaty, Vol. 62, pp. 50-58, 2018.
[72] A. K. Chatterjee, R. Banerjee, M. Sharon, “Enhancement of hydrogen oxidation activity at a nickel coated carbon beads electrode by cobalt and iron”, J. Power Sources, Vol. 137, pp. 216-221, 2004.
[73] C. K. Cho, B. H. Choi, K. T. Lee, “Effect of Co alloying on the electrochemical performance of Ni-Ce0.8Gd0.2O1.9 anodes for hydrocarbon-fueled solid oxide fuel cells”, J. Alloys Compd., Vol. 541, pp. 433-439, 2012.
[74] J. Ayawanna, D. Wattanasiriwech, Suthee Wattanasiriwech, Kazunori Sato, “Electrochemical performance of Ni1-xCox-GDC cermet anodes for SOFCs”, Energy Procedia, Vol. 34, pp. 439-448, 2013.
[75] R. Nishida, P. Puengjinda, H. Nishino, K. Kakinuma, M. E. Brito, M. Watanabe, H. Uchida, “High-performance electrodes for reversible solid oxide fuel cell/solid oxide electrolysis cell: Ni–Co dispersed ceria hydrogen electrodes”, RSC Adv., Vol. 4, pp. 16260-16266, 2014.
[76] T. Guo, X. L. Dong, M. M. Shirolkar, X. Song, M. Wang, L. Zhang, M. Li, H. Q. Wang, “Effects of cobalt addition on the catalytic activity of the Ni-YSZ anode functional layer and the electrochemical performance of solid oxide fuel cells”, ACS Appl. Mater. Interfaces, Vol. 6, pp. 16131-16139, 2014.
[77] J. C. W. Mah, A. Muchtar, M. R. Somalu, M. J. Ghazali, “Metallic interconnects for solid oxide fuel cell: A review on protective coating and deposition techniques”, Int. J. Hydrogen Energy, Vol. 42, pp. 9219-9229, 2017.
[78] W. Nicharee, S. Chaianansutcharit, K. Sato, “Electrochemical performance and stability of Ni1-xCox-based cermet anode for direct methane-fuelled solid oxide fuel cells”, MATEC Web of Conferences, Vol. 130, pp. 3005-3009, 2017.
[79] G. C. Ding, T. Gan, J. Yu, P. Li, X. L. Yao, N. J. Hou, L. J. Fan, Y. C. Zhao, Y. D. Li, “Carbon-resistant Ni1-xCox-Ce0.8Sm0.2O1.9 anode for solid oxide fuel cells fed with methanol”, Catal. Today, Vol. 298, pp. 250-257, 2017.
[80] Z. Xie, C. R. Xia, M. Y. Zhang, W. Zhu, H. T. Wang, “Ni1−xCux alloy-based anodes for low-temperature solid oxide fuel cells with biomass-produced gas as fuel”, J. Power Source, Vol. 161, pp. 1056-1061, 2006.
[81] M. Miyake, S. Matsumoto, M. Iwami, S. Nishimoto, Y. Kameshima, “Electrochemical performances of Ni1-xCux/SDC cermet anodes for intermediate-temperature SOFCs using syngas fuel”, Int. J. Hydrogen Energy, Vol. 41, pp. 13625-13631, 2016.
[82] Z. C. Wang, S. Q. Wang, S. Y. Jiao, W. J. Weng, K. Cheng, B. Qian, H. L. Yu, Y.M. Chao, A hierarchical porous microstructure for improving long-term stability of Ni1-xCux/SDC anode-supported IT-SOFCs fueled with dry methane, J. Alloys Compd., Vol. 702, pp. 186-192, 2017.
[83] H. Kim, C. Lu, W. L. Worrell, J. M. Vohs, R. J. Gorte, “Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells”, J. Electrochem. Soc., Vol. 149, pp. A247-A250, 2002.
[84] M. L. Toebes, J. H. Bitter, A. J. V. Dillen, K. P. D. Jong, “Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers”, Cat. Today, Vol. 76, pp. 33-42, 2002.
[85] K. Wei, X. X. Wang, R. A. Budiman, J. H. Kang, B. Lin, F. B. Zhou, Y. H. Ling, “Progress in Ni-based anode materials for direct hydrocarbon solid oxide fuel cells”, J. Mater. Sci., Vol. 53, pp. 8747-8765, 2018.
[86] M. S. Fan, A. Z. Abdullah, S. Bhatia, “Utilization of greenhouse gases through carbon dioxide reforming of methane over Ni-Co/MgO-ZrO2: preparation, characterization and activity studies”, Appl. Catl. B-Environ., Vol. 100, pp. 365-377, 2010.
[87] J. G. Zhang, H. Wang, A. K. Dalai, “Development of stable bimetallic catalysts for carbon dioxide reforming of methane”, J. Catal., Vol. 249, pp. 300-310, 2007.
[88] W. Tu, M. Ghoussoub, C. V. Singh, Y. H. C. Chin, “Consequences of surface oxophilicity of Ni, Ni-Co, and Co clusters on methane activation”, J. Am. Chem. Soc., Vol. 139, pp. 6928-6945, 2017.
[89] 凌永健,王治平,汪建民主編,材料分析,初版,中國材料科學會,新竹市,民國七十七年。
[90] https://www.rigaku.com/en/products/xrf/primus2.
[91] https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-fluorescence/what-is-xrf.html
[92] J. Asgardi, J. C. Calderón, F. Alcaide, A. Querejeta, L. Calvillo, M. J. Lázaro, G. García, E. Pastor, “Carbon monoxide and ethanol oxidation on PtSn supported catalysts: Effect of the nature of the carbon support and Pt:Sn composition”, Appl. Catal. B, Vol. 33, pp. 168-169, 2015.
[93] D. H. Kwak, Y. W. Lee, S. B. Han, E. T. Hwang, H. C. Park, M. C. Kim, K. W. Park. “Ultrasmall PtSn alloy catalyst for ethanol electro-oxidation reaction”, J. Power Sources, Vol. 275, pp. 557-562, 2015.
[94] Y. T. Liang, S. P. Lin, C. W. Liu, S. R. Chung, T. Y. Chen, J. H. Wang, K. W. Wang, “The performance and stability of the oxygen reduction reaction on Pt-M (M = Pd, Ag and Au) nanorods: An experimental and computational study”, Chem. Commun., Vol. 51, pp. 6605-6608, 2015.
[95] F. E. Lopez-Suarez, A. Bueno-Lopez, K. I. B. Eguiluz, G. R. Salazar-Banda, “Pt-Sn/C catalysts prepared by sodium borohydride reduction for alcohol oxidation in fuel cells: effect of the precursor addition order”, J. Power Sources, Vol. 268, pp. 225-232, 2014.
[96] T. H. Yeh, C. W. Liu, H. S. Chen, K. W. Wang, “Preparation of carbon-supported PtM (M = Au, Pd, or Cu) nanorods and their application in oxygen reduction reaction”, Electrochem. Commun., Vol. 31, pp. 125-128, 2013.
[97] Y. Z. Guo, S. Y. Yan, C. W. Liu, T. F. Chou, J. H. Wang, K. W. Wang, “The enhanced oxygen reduction reaction performance on PtSn nanowires: the importance of segregation energy and morphological effects”, J. Mater. Chem. A, Vol. 5, pp. 14355-14364, 2017.
[98] M. Bron, S. Fiechte, M. Hilgendorff, P. Bogdanoff, “Catalysts for oxygen reduction from heat-treated carbon-supported iron phenantroline complexes”, J. Appl. Electrochem., Vol. 32, pp. 211-216, 2002.
[99] K. I. Hirano, R. P. Agarwala, B. L. Averbach, M. Cohen, “Diffusion in Cobalt-Nickel Alloys”, J. Appl. Phys., Vol. 33, pp. 3049-3054, 1962.
[100] J. M. Zhang, S. N. Sun, Y. Li, X. J. Zhang, P. Y. Zhang, Y. J. Fan, “A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation”, Int. J. Hydrogen Energy, Vol. 42, pp. 26744-26751, 2017.
|