博碩士論文 105327013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:3.129.25.104
姓名 李偉豪(WEI-HAO LEE)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 手持式電磁型態植體骨整合檢測裝置暨驗證
(Design and Validation of Handheld Electromagnetic Type Detection Device for Implant Osseointegration)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來植體植入手術已廣泛由牙科植體推廣至四肢截肢、顏面五官 等植體植入,臨床普遍認為術後的骨整合 (植體穩固度) 好壞為判斷手術成功與否的依據。本研究開發植體骨整合檢測裝置,以下肢截肢植體術後骨整合檢測為具體對象,並依據常規肢體植入手術流程,設計相關模擬情境,藉由裝置提供客觀量化數值,以建立有效評估方式,協助臨床醫師即時治療,降低手術失敗的風險。
下肢截肢植體於骨髓腔中,可視為懸臂梁結構。此一近似懸臂梁結構的骨整合狀態越好,意即植體周圍剛性越強,則共振頻率高;反之,則較低。本檢測裝置以200至10k Hz的交流小波訊號輸入至疊層類型激勵線圈,使之產生變動的磁力激振植體上方的磁性配件,使其振動。基於霍爾效應,磁場通過線性霍爾元件,產生感應電動勢。透過頻率響應函數計算探頭組及參考組霍爾電壓後,獲得該懸臂梁結構的共振頻率,據此判斷骨整合情況之好壞。
開發一檢測裝置並確認其規格至為重要,裝置以激勵線圈做激振源,依照第三章第一節元件選用準則篩選,最終選用疊層激勵線圈;以線性霍爾元件為響應量測元件,依照第二章所定義訊雜比來選擇適用的霍爾元件,最終選用霍爾元件。並對所設計電路中氧化金屬膜電阻進行探討,為防止電阻消耗功率過高,導致裝置外殼融化,以1伏特作為本檢測裝置驅動電壓,此時產生0.1瓦特消耗功率。透過以上元件選用後,計算出檢測裝置靈敏度為0.48 mV/mA,而在裝置頻率響應範圍內,系統誤差值皆為0.90%。
以努比亞山羊後肢股骨作為裝置驗證in-vitro骨整合實驗骨塊,使用不同比例環氧樹脂及玻璃纖維粉模擬股骨不同階段緻密骨增生的介面組織,並另製激振植體之磁性配件NCUpeg,同時和比對Osstell® 的磁性配件Smartpeg。在Smartpeg量測下,共振頻率值為高頻(9k Hz),數值模擬結果顯示植體僅頂端局部振動;NCUpeg量測下,共振頻率值為低頻(1.3k Hz),數值模擬結果為植體及山羊股骨整體振動。為了能真實反應股骨及植體間骨細胞整體增生情況,故使用NCUpeg作為日後檢測磁性配件。三種骨整合狀態設計為 (1) 植體植入手術後初始穩固度;(2) 復健期緻密骨骨細胞增長狀況;(3) 植體植入後6個月時,骨整合接近完成狀況。量測結果,不管在任何方向下量測,介面組織為環氧樹脂加30%玻璃纖維粉調和液 (楊氏係數5.1 GPa) 共振頻率值最高,而無任何介面組織模擬術後初始穩固度之股骨標本最低。此結果證實了當植體周圍剛性越強,則共振頻率上升,骨塊量測結果也符合原先預期。
本檢測裝置以簡易電路設計達成縮小體積、手持式設計的目標,對所設計之裝置進行一系列規格驗證,且比較Smartpeg與NCUpeg量測數據,並對照數值模擬結果,NCUpeg能具體呈現實際骨整合狀態。藉本研究開發之檢測裝置預期可提供臨床醫師作為各階段療程的評估工具,建構更完善療程規劃,並提高手術效益。期盼未來能將本裝置列為肢體植入手術流程重要環節。
摘要(英) In recent years, implantation surgery has been widely used from dental implants to implantation of limbs, amputations, facial features, etc. Clinically, it is generally believed that the postoperative osseointegration (implant stability) is the basis for judging the success of the operation. This research develops an osseointegration detection device for lower limb amputation implants, and design related simulation scenarios based on limb implantation surgery procedures, establish effective evaluation methods by providing objective quantitative values through this device, assist physicians in immediate treatment and reduce the risk of surgical failure.
Lower limb implant knocks into femur, can be considered as cantilever structure. The better the rigidity of the cantilever beam, the stronger the rigidity around it, the higher the resonance frequency; otherwise, the lower the resonance frequency. This device inputs 200 to 10k Hz AC wavelet signal to the laminated type actuator coil, make it produce exchanged magnetic force to excite the magnetic fitting above the implant, and make it vibrate. Based on the Hall effect, the magnetic field passes through a linear Hall element to generate an induced electromotive force. After the Hall voltage of the probe group and the reference group is calculated by the frequency response function, to get the resonance frequency of the structure, judge the degree of osseointegration accordingly.
It is important to develop a detection device and confirm its specifications, the device uses the excitation coil as the excitation source, according to the standard in Chapter 3, the DFE322512C laminated excitation coil was finally selected. Using linear Hall elements as response measurement elements, select the applicable Hall element according to the noise ratio in Chapter 2, finally choose WSH135 this Hall element. And discuss the oxide metal film resistance RSF2WS in the designed circuit, to prevent the resistor from consuming too much power and causing the device case to melt, the driving voltage of this device is 1 volt, generates 0.1 watts of power consumption. After element selection, calculated the detection device sensitivity is 0.48 mV/mA, in the frequency response range, the system error value is 0.90%.
Using the femur of the hindlimb of Nubian goat as the experimental object, use different proportions of epoxy resin and glass fiber powder to simulate different stages of osseointegration, and make magnetic accessories NCUpeg, and compare Osstell® magnetic accessories Smartpeg. In Smartpeg measurement, the resonance frequency is high frequency (9k Hz), the numerical simulation results show that the implant only vibrates locally at the top; In NCUpeg measurement, the resonance frequency is low frequency (1.3k Hz), the numerical simulation results are the overall vibration of the implant and goat femur. In order to reflect the overall proliferation of bone between the femur and the implant, so choose NCUpeg as the accessory. Bone block design: (1) Initial stability after implantation; (2) the growth of cortical bone cells during rehabilitation; (3) At 6 months after implantation, osseointegration is almost complete. Regardless of the measurement results in any direction, the interface structure is the highest resonance frequency of epoxy resin and 30% glass fiber powder (Young′s coefficient 5.1 GPa), and without any interface, tissue resonance frequency is the lowest. This result confirms that the stronger the rigidity around the implant, the resonance frequency is higher, the measurement results also conform expectations.
The goal of this device is to simplify the circuit design to achieve reduced size and handheld, perform a series of specification verifications on the designed device, compare Smartpeg and NCUpeg, and compare the numerical simulation results, NCUpeg can show the actual state of osseointegration. The development of this device hopes to provide physicians as an evaluation tool for various stages of treatment, building a more complete treatment plan, and improve surgical effectiveness. Expect this device as an important part of the limb implantation procedure in the future.
關鍵字(中) ★ 截肢
★ 骨整合
★ 共振頻率法
★ 檢測評估裝置
★ 裝置規格
關鍵字(英) ★ Amputation
★ Osseointegration
★ Resonance Frequency Method
★ Detection and Evaluation Device
★ Device Specifications
論文目次 摘要………………………………………………………………………………………..…...I
目錄……………………………………………………………………………………………..i
圖目錄……………………………………………………………………………………...…iii
表目錄………………..…………………………………………………………………..……vi
第一章、緒論………………………………………………………………………………..1
1-1 研究動機與目的…………………………………………………….………………1
1-2 文獻探討…………………………………………………………………………….2
1-2-1 不同型態之骨整合檢測…………………..…………………………………..3
1-2-2 肢體骨整合檢測……………………………………………………………..8
1-3 研究範疇…………………………………………………………………………...10
第二章、理論基礎………………………………………………………………………….12
2-1 共振頻率法………………………………………………………………………….12
2-1-1 懸臂樑結構共振………………………………………….………………...12
2-1-2 振動量測……………………………………………………………………13
2-2 磁場理論…………………………………………………………………………...16
2-2-1 磁力…………………………………………………………………………16
2-2-2 磁通量密度…………………………………………………………………16
2-2-3 激勵線圈及法拉第定律…………………………………………………17
2-2-4 霍爾元件及霍爾效應………………………………………………………18
2-3 訊號分析…………………………………………………………………………….20
2-3-1 傅立葉轉換…………………………………………………………………20
2-3-2 莫萊小波……………………………………………………………………20
2-3-3 訊雜比………………………………………………………………………22
2-4 裝置規格…………………………………………………………………………….23
2-4-1 動態區間與頻率響應………………………………………………………23
2-4-2 精準度與準確度……………………………………………………………24
2-4-3 靈敏度………………………………………………………………………26
2-4-4 解析度………………………………………………………………………26
第三章、檢測裝置設計…………………………………………………………………….28
3-1 激振及響應量測元件……………………………………………………………...30
3-1-1 激勵線圈激振元件………………………………………………………31
3-1-2 霍爾元件響應量測…………………………………………………………33
3-1-3 激勵線圈及霍爾元件測試………………………………………………36
3-2 檢測電路及手持裝置……………………………………………………………...37
3-3 系統頻率響應分析………………………………………………………………...38
3-4 檢測儀規格………………………………………………………………………...41
3-4-1 穩定性測試…………………………………………………………………41
3-4-2 頻率響應誤差………………………………………………………………43
3-4-3 裝置消耗功率………………………………………………………………44
3-4-4 靈敏度………………………………………………………………………45
第四章、體外骨塊實驗規劃……………………………………………………………….48
4-1 體外骨塊選用……………………………………………………………………...48
4-2 植入植體設計………………………………………………………………….......50
4-3 實驗規劃…………………………………………………………………………...52
4-4 實驗環境參數驗證………………………………………………………………..53
第五章、結果與討論……………………………………………………………………….58
5-1 體外骨塊實驗結果………………………………………………………………...58
5-2 實驗數據討論……………………………………………………………………...62
第六章、結論………………….…………………………………………………………..64
參考文獻……………………………………………………………………………………..66
附錄..……………………………………………………………………………………...72
參考文獻 [1] P. I. Brånemark, G. A. Zarb, T. Albrektsson, & H. M. Rosen, (1986), “Tissue-Integrated Prostheses Osseointegration in Clinical Dentistry,” Chicago: Quintessence Pub Co, 496-497.
[2] Y. Li & R. Brånemark, (2017), “Osseointegrated Prostheses for Rehabilitation Following Amputation,” Der Unfallchirurg, 120(4), 285-292.
[3] R. Gapski, H. L. Wang, P. Mascarenhas, & N. P. Lang, (2003), “Critical Review of Immediate Implant Loading,” Clinical Oral Implants Research, 14(5), 515-527.
[4] K. Hagberg,R. Brånemark,B. Gunterberg, &B. Rydevik, (2008), “Osseointegrated Trans-femoral Amputation Prostheses: Prospective Results of General and Condition-specific Quality of Life in 18 Patients at 2-Year Follow-up,” Journal of Prosthetics and Orthotics International, 32(1),29-41.
[5] N. Meredith, (1998), “A Review of Nondestructive Test Methods and their Application to Measure the Stability and Osseointegration of Bone Anchored Endosseous Implants,” Critical Reviews in Biomedical Engineering, 26(4), 275-291.
[6] M. A. Muderis, W. Lu, K. Tetsworth, B. Bosley, & J. Li, (2017), “Single-stage Osseointegrated Reconstruction and Rehabilitation of Lower Limb Amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a Prospective Cohort Study,” Journal of Rehabilitation Medicine, 7(3), 496–502.
[7] Katsunori Koretake, Hiroshi Oue, Shinsuke Okada, Yosuke Takeda, Kazuya Doi, Yasumasa Akagawa, & Kazuhiro Tsuga, (2015), “The Effect of Superstructures Connected to Implants with Different Surface Properties on the Surrounding Bone,” Journal of Functional Biomaterials, 6(3), 623–633.
[8] H. Oka, T. Yamamoto, K. Saratani, & T. Kawazoe, (1989), “Application of Mechanical Mobility of Periodontal Tissues to Tooth Mobility Examination,” Medical and Biological Engineering and Computing, 27(1), 75-81.
[9] M. Atsumi, S. H. Park, & H. L. Wang, (2007), “Methods Used to Assess Implant Stability: Current Status,” The international journal of oral, 22(5), 743-54.
[10] S. Porus, & H. Georg, (2014), “Evaluation of The Value of Bone Training (Progressive Bone Loading) by using the Periotest: A Clinical Study,” Journal of Contemp Clin Dent, 5(4), 461-465.
[11] H. Jung, H. J. Kim, S. Hong, K. D. Kim, H. S. Moon, J. H. Je, & Y. Hwu, (2003), “Osseointegration Assessment of Dental Implants using A Synchrotron Radiation Imaging Technique: A Preliminary Study,” Journal of Oral & Maxillofacial Implants, 18(1), 121-6.
[12] R. Vayron, E. Soffer, F. Anagnostou, & G. Haïat, (2014), “Ultrasonic Evaluation of Dental Implant Osseointegration,” Journal of Biomechanics, 47(14), 3562-3568.
[13] Yoann Hériveaux, Vu-Hieu nguyen, Didier Geiger, & Guillaume Haïat, (2019), “Elastography of the Bone-implant Interface,” Scientific Reports, 9(1), 14163.
[14] N. Meredith, D. Alleyne, & P. Cawley, (1996), “Quantitative Determination of the Stability of the Implant‐tissue Interface Using Resonance Frequency Analysis,” Clinical Oral Implants Research, 7(3), 261-267.
[15] L. Sennerby, & N. Meredith, (1998), “Resonance Frequency Analysis: Measuring Implant Stability and Osseointegration,” Compendium of Continuing Education in Dentistry, 19(5), 493-498.
[16] S. J. Heo, L. Sennerby, M. Odersjö, G. Granström, A. Tjellström, & N. Meredith, (1998), “Stability measurements of craniofacial implants by means of resonance frequency analysis. A clinical pilot study.” Journal of Larvngologv and Otology, 112(6), 537-42.
[17] L. Pagliani, L. Sennerby, A. Petersson, D. Verrocchi, S. Volpe, & P. Andersson, (2013), “The Relationship Between Resonance Frequency Analysis (RFA) and Iateral Displacement of Dental Implants: An in Vitro Study,” Journal of Oral Rehabilitation, 40(3), 221-7.
[18] H. M. Huang, K. Y. Cheng, C. T. Lin, W. J. Huang, W. C. Yao, P. Y. Cheng, & S. Y. Lee, (2004), “Examination of a Novel Designed Device Used for Dental Implants Stability Detection-An Animal Study,” Journal of Medical and Biological Engineering, 24(3), 155-161.
[19] C. Y. Pan, S. T. Chou, Y. C. Tseng, Y. H. Yang, C. Y. Wu, T. H. Lan, P. H. Liu, & H. P. Chang, (2012), “Influence of different implant materials on the primarystability of orthodontic mini-implants,” Journal of Medical Sciences, 28(12), 673-8.
[20] H. B. Zhuang, W. S. Tu, M. C. Pan, J. W. Wu, C. S. Chen, S. Y. Lee, & Y. C. Yang, (2013), “Non-contact Vibro-acoustic Detection Technique for Dental Osseointegration Examination,” Journal of Medical and Biological Engineering, 33(1), 35-44.
[21] N. Meredith, F. Shagaldi, D. Alleyne, L. Sennerby, & P. Cawley, (1997), “The Application of Resonance Frequency Measurements to Study the Stability of Titanium Implants during Healing in the Rabbit Tibia,” Clinical Oral Implants Research, 8(3), 234-243.
[22] Y. Ito, D. Sato, S. Yoneda, D. Ito, H. Kondo, & S. Kasugai, (2008), “Relevance of Resonance Frequency Analysis to Evaluate Dental Implant Stability: Simulation and Histomorphometric Animal Experiments,” Clinical Oral Implants Research, 19(1), 9-14.
[23] P. Cawley, & A. Pettersson, (2014), “Method and Arrangement Relating to Testing Objects,” U.S. Patent No. 20140072929.
[24] M. Yamane, M. Yamaoka, M. Hayashi, I. Furutoyo, N. Komori, & B. Ogiso, (2008), “Measuring Tooth Mobility with a No‐Contact Vibration Device,” Journal of Periodontal Research, 43(1), 84-89.
[25] T. S. Chia, C.S. Chen, & M. C. Pan, (2014), “Assessment of Dental Implantation Osseointegration through Electromagnetic Actuation and Detection,” Journal of Medical Devices, 8(3), 030940.
[26] R. Z. Mou, S. B. Lin, C. S. Chen, & M. C. Pan, (2015), “Detection Device for Dental Implant Osseointegration Using Inductors and Hall Sensors,” Journal of Medical Devices, 9(2), 020937.
[27] 林修白 (2017):非接觸式雙電感植牙穩固度檢測裝置設計製作暨驗證研究。中央大學機械工程學系學位論文,1-90。
[28] J. F. Barrett, & N. Keat, (2004), “Artifacts in CT : Recognition and Avoidance,” Radiographics, 24(6), 1679-91.
[29] M. J. Lee, S. Kim, S. A. Lee, H. T. Song, Y. M. Huh, D. H. Kim, S. H. Han, & J. S. Suh, (2007), “Overcoming Artifacts from Metallic Orthopedic Implants at High-field-strength MR Imaging and Multi-detector CT,” Radiographics, 27(3), 791-803.
[30] S. C. Hung, C. C. Wu, C. J. Lin, W. Y. Guo, C. B. Luo, F. C. Chang, & C. Y. Chang, (2014), “Artifact Reduction of Different Metallic Implants in Flat Detector C-arm CT,” American Journal of neuroradiology, 35(7), 1288-92.
[31] 陳謀法 (2010):以有限元素法分析直接骨骼植入型下肢義肢螺釘設計。陽明大學醫學工程研究所學位論文,1-79。
[32] J. Tillander, K. Hagberg, L. Hagberg, & R. Brånemark, (2010), “Osseointegrated Titanium Implants for Limb Prostheses Attachments,” Clinical Orthopaedics and Relates Research, 468(10), 2781-2788.
[33] A. M. Munjed, A. B. Belinda, V. F. Anthony, A. L. Paul, D. K. Tyler, M. H. Jason, & T. K. Jason, (2016), “Radiographic Assessment of Extremity Osseointegration for the Amputee,” Journal of Technology and Innovation, 18(2-3), 211-216.
[34] N. J. Cairns, C. J. Adam, M. J. Pearcy, & J. Smeathers, (2011), “Evaluation of Modal Analysis Techniques using Physical Models to Detect Osseointegration of Implants in Transfemoral Amputees,” Conference of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 1600-1603.
[35] A. I. Pearce, R. G .Richards, S. Milz, E. Schneider, & S. G. Pearce, (2007), “Animal Models for Implant Biomaterial Research in Bone: A Review,” Journal of European cells & materials, 13, 1-10.
[36] A. S. Turner, (2001), “Animal Models of Osteoporosis - Necessity and Limitations,” Journal of European cells & materials, 1, 66-81.
[37] A. Chevrier, A. S. Kouao, G. Picard, M. B. Hurtig, & M. D. Buschmann, (2014), “Interspecies Comparison of Subchondral Bone Properties Important for Cartilage Repair,” Journal of Orthopaedic Research, 33(1), 63-70.
[38] T. K. Pal, A. Chakraborty, & S. Banerjee, (2014), “A Micro-anatomical Comparison of Goat Jaw Cancellous Bone with Human Mandible: Histomorphometric Study for Implant Dentistry,” Journal of ICDRO, 6(1), 20-23.
[39] E. C. Webb, (2014), “Goat Meat Production, Composition, and Quality,” Animal Frontiers, 4(4), 33-37.
[40] 許桂樹、陳克群、李怡銘 (2007):感測器原理與應用。台北市,全華圖書。
[41] J. David, (1998), “Introduction to Magnetism and Magnetic Materials, Second Edition,” America:CRC Press.
[42] P. W., Bridgman. (1939). “Biographical Memoir of Edwin Herbert Hall,” America:National Academy of Sciences of the United States.
[43] A. Grossmann, K. D. Richard, & J. Morlet, (1989), “Reading and Understanding Continuous Wavelet Transforms,” Part of the IPTI, 2-20.
[44] G. Farid, & C. K. Benjamin, (2017), “Automatic Control Systems (9nd ed.),” United States, Wiley.
[45] S. Mark, W. David, D. Wheeler, R. Selbie, E. Laura, Buckthought, & F. Mike, (2013), “Overseer: Accuracy, Precision, Error and Uncertainty,” Paper presented at the Accurate and Efficient Use of Nutrients on Farms, New Zealand.
[46] 史天元 (2008):解析度與精度。地籍測量期刊,第3期,第61-80頁。
[47] E. A. Trofimov, R. Y. Lutfullin, & R. M. Kashaev, (2015), “Elastic Properties of the Titanium Alloy Ti-6Al-4V,” Letters on Materials, 5(1), 67-69.
[48] S. R. Mohamed, S. A. C. Ghani, & W. Sawangsri, (2018), “Mechanical Properties of Additive Manufactured CoCrMo Metabiomaterials for Load Bearing Implants,” Jurnal Tribologi , 21, 93-107.
[49] K. Tantikom, H. Kanahashi, S. Yamamoto, & T. Aizawa, (2003), “Fabrication of SUS304 Regularly Cell-Structured Material and Their Mechanical Properties,” Journal of Materials Transactions, 44(7), 1290-1294.
[50] W. P. James, K. S. James, & J. A. Barry, (2013), “Measurements on the human femur - I. lengths, diameters and angles,” Journal of Northwest Univ Med Sch, 15(4), 281–290.
[51] M. Cuppone, B. Seedhom, E. Berry, & A. Ostell, (2004), “The Longitudinal Young′s modulus of Cortical Bone in the Midshaft of Human Femur and its Correlation with CT Scanning Data,” Published in Calcified Tissue International, 74(3), 302-309.
[52] S. Checa, P. Prendergast, & G. Duda, (2011), “Inter-Species Investigation of the Mechano-Regulation of Bone Healing: Comparison of Secondary Bone Healing in Sheep and Rat,” Journal of Biomechanics, 44(7), 1237-1245.
[53] D. Duddeck, & F. Faber, (2015), “Effects of Multiple Reuse, Remounting and Consecutive Autoclave Sterilization on Osstell SmartPegs,” Clinical Oral Implants Research, 26(12), 79.
[54] 張博欽 (2020):下肢植體骨整合穩固度分析研究。中央大學機械工程學系學位論文,1-53。
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2020-3-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明