博碩士論文 106353013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:18.222.67.251
姓名 張博欽(Po-chin Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 下肢植體骨整合穩固度分析研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 牙科植體經由手術植入後,藉由骨細胞增生於植體表面產生骨整合現象,由包覆於植體周圍的介面組織提供穩固度,因此手術後成功與否的關鍵在於骨整合程度,即為植體穩固度。近年來此植體植入方法應用於肢體截肢。截肢植體植術手術後,植體穩固度檢測有三個階段,分別為術後初始穩固度、復健過程中植體穩固度評估、及術後定期植體穩固度追蹤等。
實驗規劃基於骨整合期間,植體表面增生的骨細胞構成介面組織,提供植體穩固度增加條件,本研究規劃不同楊氏係數之環氧樹脂作為股骨與植體間介面組織,以不添加epoxy、純 epoxy 及 epoxy+30%玻璃纖維,分別對應植體穩固度檢測的三個階段,模擬骨界面組織因剛性改變,可由檢測模型之共振頻率趨勢,評估植入物是否達到穩固狀態,據此建立有限元素模型及參數設定。應用 ANSYS® 15.0 有限元素分析預估可能產生之振動模式與共振頻率,植體幾何模型建立參照澳洲骨整合團隊所提供實際樣品及2D圖面,使用 SolidWorks® 繪製 3D 檔案,植體表面原呈立體結構處通過骨整合過程,骨組織充滿立體結構之空隙與髓腔內壁牢牢接合,故建立植體模型時將立體表面簡化為平面接觸之固定條件,羊骨模型則採用逆向工程雷射掃描器匯入,參考文獻依序建立各部件材質特性,並使用自由網格將模型切割運算。
本研究使用環氧樹脂模擬股骨與植體間骨整合介面組織,當骨整合過程良好介面組織再生與重塑現象使股骨與植體緊密接合,股骨、植體與介面組織接觸面上不存在摩擦現象,有限元素模型在介面組織接觸條件設定,將股骨、介面組織與植體兩處接觸面設為結合(Bonded)狀態;而在不添加任何介面組織其模型接觸條件,為模擬術後初始穩固度,骨細胞尚未產生再生與重塑現象,股骨與植體間接觸面存在滑動及摩擦行為,本研
究將表面接觸設定為摩擦狀態其摩擦係數定義為 0.58;因 NCUpeg 底端有螺牙與植體旋,視為固定故將接觸面條件設為結合狀態。
數值分析時參照實驗虎鉗夾持方式,設定結構系統邊界條件同懸臂樑結構之固定端,設將股骨底部最突出三處位置,設定為整體結構固定(Fixed Support)支撐點,進行模態分析並討論共振頻率之振型(Mode Shape),設定 1-20 組模態振型結果做檢視,選取符合實驗裝置測量 X、Y 方向相同之模態振型,讀取所代表之共振頻率值作為紀錄,本研究
初期沿用 Osstell®-SmartPeg 作為植體頂端磁性配件,但於實驗測量時僅可得高頻共振頻率,在 CAE 模態分析結果高頻共振頻率僅為 SmartPeg 於植體頂端局部振動,並無激振至羊骨與植體,無法反映下肢植體手術後骨整合情況,本研究設計一款 NCUpeg 用於下肢植體檢測,於實驗測量結果可得低頻共振頻率,模態分析其低頻共振頻率為整隻羊骨
及植體之位移擺動,其共振頻率值可代表下肢植體植入穩固程度,故選用 NCUpeg 作為本研究之磁性配件,依據收斂分析結果將元素大選用小 4.0 mm 作為分割,展開不同介面組織共振頻率值分析結果,評估植體穩固度之趨勢。
經過實驗測試與有限元素模態分析比較驗證,設計一款 NCUpeg 用於下肢植體檢測,經由模態分析結果改良此測量時必需使用之磁性配件,並證明 NCUpeg 於測量裝置之可行性。本研究綜合模態分析共振頻率數據統整結果,若植體穩固度逐漸增加其自然頻率也會逐漸升高,故手持式檢測儀可由測量共振頻率來判斷植體穩固度逐漸增加之趨勢。
摘要(英) Dental implant after surgical implantation,Osteointegration occurs through the proliferation of bone cells on the surface of the implant, The interface tissue surrounding the implant provides stability, so the key to success after surgery is the degree of osseointegration, which is the stability of the implant. In recent years, this implantation method has been applied to limb amputations. After the amputation implant implantation operation, there are three stages of implant stability detection, which are the initial postoperative stability, the evaluation of the implant stability during rehabilitation, and the regular postoperative implant stability tracking.
The experimental planning is based on the osteoblast proliferation on the surface of the implant during the osseointegration to form the interface tissue to provide conditions for increasing the stability of the implant. This study plans to use epoxy resins with different Young′s coefficients as the interface between the femur and the implant. By not adding epoxy, pure epoxy, and epoxy + 30% glass fiber, corresponding to the three stages of the implant stability test, the bone interface tissue is simulated due to the rigidity change. The resonance frequency trend of the model can be used to evaluate whether the implant is stable State, based on which the finite element model and parameter settings are established.Applying ANSYS® 15.0 finite element analysis to estimate the possible vibration modes and resonance
frequencies. The geometric model of the implant is established with reference to the actual samples and 2D drawings provided by The Osseointegration Group of Australia. SolidWorks® is used to draw 3D files. The surface of the implant was originally a three-dimensional structure. Through the osseointegration process, the bone tissue filled with the three-dimensional structure was firmly connected to the inner wall of the medullary cavity.
Therefore, the three-dimensional surface was simplified to a fixed condition of planar contact when the implant model was established. Reverse engineering laser scanner was used to import, the material properties of each component were established in order by reference, and the model was cut and calculated using free mesh. In this study, epoxy resin was used to simulate the osseointegration interface tissue between the femur and the implant. When the osseointegration process is good, the interface tissue regeneration and remodeling make the femur and the implant tightly joint, and there is no friction between the femur, the implant, and the interface tissue. The finite element model sets the contact conditions of the interface tissue, and combines the two contact surfaces of the femur, the interface tissue, and the implant ; Without adding any interface tissue and its model contact conditions, in order to simulate the initial stability after surgery, bone cells have not yet regenerated and remodeled, and the contact surface between the femur and the implant has sliding and friction behaviors. For the friction state, the friction coefficient is defined as 0.58; because the bottom end of NCUpeg is screwed with the implant, it is regarded as fixed, so the contact surface conditions are set to the combined state. For numerical analysis, refer to the experimental vise clamping method, set the boundary conditions of the structural system to the fixed end of the cantilever beam structure, set the three most prominent positions of the femoral bottom as the fixed support points of the overall structure, perform modal analysis and discuss the resonance set 1-20 sets of modal shape results for review, select the modal shapes that match the experimental device to measure the same X and Y directions, and read the representative resonance frequency threshold value as a record. At the beginning of this study, Osstell®-SmartPeg was used as the magnetic accessory at the top of the implant. However, only high-frequency resonance frequencies were obtained during the experimental
measurement. According to the CAE modal analysis results, the high-frequency resonance frequency was only SmartPeg′s local vibration at the top of the implant. There is no vibration to the sheep bones and implants, which can not reflect the osseointegration status of lower limb implant surgery. This study designed a NCUpeg for lower limb implant detection. The experimental measurement results can obtain the low frequency resonance frequency. The low-frequency resonance frequency of the modal analysis is the displacement and swing of the entire sheep bone and the implant. The resonance frequency value can represent the stability of the lower limb implant implantation. Therefore, NCUpeg was selected as the magnetic accessory for this study. Using 4.0 mm as the segmentation, the analysis results of tissue resonance frequency thresholds of different interfaces were developed to evaluate the tendency of implant stability.
After experimental tests and finite element modal analysis and comparison verification, an NCUpeg is designed for lower limb implant detection. The modal analysis results are used to improve the magnetic accessories necessary for this measurement and prove the feasibility of NCUpeg in the measurement device. In this study, the results of the modal analysis of the resonance frequency data are integrated. If the stability of the implant gradually increases, the natural frequency will gradually increase. Therefore, the handheld detector can measure the tendency of the increase of the stability of the implant by the resonance frequency.
關鍵字(中) ★ 截肢
★ 骨整合
★ 共振頻率
★ 模態分析
★ 有限元素法
關鍵字(英) ★ Amputation
★ Osseointegration
★ Resonance Frequency
★ Modal Analysis
★ Finite Element Analysis
論文目次 第一章 緒論 ........................................... 1
1.1 研究背景與動機 ..................................... 1
1.2 文獻回顧 .......................................... 3
1.3 研究範疇 .......................................... 8
第二章 數值分析理論 .................................... 9
2.1 懸臂梁振動分析 ..................................... 9
2.2 有限元素法分析 .................................... 11
2.3 模態分析 ......................................... 13
第三章 實驗與分析 ..................................... 16
3.1 模型設計 ......................................... 17
3.1.1實驗規劃 ........................................ 17
3.1.2模型制作 ........................................ 19
3.2 建立幾何模型及參數設定 ............................. 23
3.3 數值模擬 ......................................... 28
3.3.1模態分析 ........................................ 29
3.3.2磁性配件NCUpeg .................................. 31
3.3.2收斂分析 ........................................ 33
第四章 模擬分析及驗證 .................................. 35
4.1 懸臂樑之理論數值討論 ............................... 35
4.2 模型分析結果 ...................................... 37
4.3 模型分析與實驗結果比較 .............................. 41
4.4 NCUpeg分析結果比較 ................................ 44
第五章 結論與未來展望 .................................. 46
參考文獻 ............................................. 47
附錄.................................................. 52
參考文獻 [1] 張志涵、吳柱龍,「 個人化膝下義肢承套之製前生物力學評估」,行政院國家科學委員會專題研究計畫 成果報告(編號:NSC 94-2213-E-006-011),民國 95 年。
[2] 林銘川、陳思遠和廖珮茹,「 因周邊血管病變導致下肢截肢患者的長期存活及其義肢使用狀況之調查研究」,行政院國家科學委員會補助研究計畫 成果報告(編號:NSC 90-2314-B-002-309),民國 90 年。
[3] M. Al Muderis, W. Lu, J. J. Li, and B. Bosley, “Bone Mineral Density changes after Osseointegration,” ASAMI 2016 Brisbane, 1-31 (2016).
[4] J. Hughes, and N. A. Jacobs, “Prosthetics and Orthotics International,” The Journal of the
International Society for Prosthetics and Orthotics, 16(2), 1-71 (1992).
[5] 吳柱龍、李偉強和林耕任,「 評估膝下義肢合適性之系統建立—應用於糖尿病併發之截肢患者」,行政院國家科學委員會專題研究計畫 成果報告(編號:NSC 96-2218-E-142-001),民國 97 年。
[6] 重新輔具:產品介紹。20190102,https://www.chongxin.com.tw/products_73_75.htm
[7] R. Brånemark, Ö. Berlin, K. Hagberg, P. Bergh, B. Gunterberg, and B. Rydevik, “A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation,” The Bone & Joint Journal , 96-B(1), 1–16 (2014).
[8] L. Sennerby, and N. Meredith, “Implant stability measurements using resonance frequency analysis: biological and biomechanical aspects and clinical implications,” Periodontology 2000, 47, 51-66 (2008).
[9] A. Khemka, L. Frossard, S. J. Lord, B. Bosley, and M. Al Muderis, “Osseointegrated total knee replacement connected to a lower limb prosthesis: 4 cases,” Acta Orthopaedica, 86(6), 1-16 (2015).
[10] K. Hagberg, and R. Brånemark, “One hundred patients treated with osseointegrated transfemoral amputation prostheses—Rehabilitation perspective,” Journal of Rehabilitation Research & Development, 46(3), 331-344 (2009).
[11] A. Thesleff, R. Brånemark, B. Håkansson, and M. O. Catala, “Biomechanical Characterisation of Bone-anchored Implant Systems for Amputation Limb Prostheses: A Systematic Review,” Ann Biomed Eng, 46(3), 377-391 (2018).
[12] Osseointegration Group of Australia : Spongiosa metal 。 20190105, https://www.osseointernational.com/background-of-osseointegration/history-of-osseointegration
[13] Osseointegration Group of Australia : What is Osseointegration? 。 20190110, https://www.osseointegration.org/osseointegration/
[14] W. Xu, and K. Robinson, “X-Ray Image Review of the Bone Remodeling Around an Osseointegrated Trans-femoral Implant and a Finite Element Simulation Case Study,” Annals of Biomedical Engineering, 36(3), 435-443 (2008).
[15] F. Shao, W. Xu, A. Crocombe, and D. Ewins, “Natural Frequency Analysis of Osseointegration for Trans-femoral Implant,” Annals of Biomedical Engineering, 35, 817–824 (2007).
[16] N. Meredith, “Assessment of Implant Stability as a Prognostic Determinant,” The International journal of Prosthodontics, 11, 491-501 (1998).
[17] M. Sjostrom, S. Lundgren, H. Nilson, and L. Sennerby, “Monitoring of implant stability in grafted bone using resonance frequency analysis A clinical study from implant placement to 6 months of loading,” Oral Maxillofacial Surgery, 34, 45-51 (2005).
[18] N. J. Cairns , M. J. Pearcy, J. Smeathers, and C. J. Adam, “Ability of modal analysis to detect osseointegration of implants in transfemoral amputees: a physical model study,” Med Biol Eng Comput, 51, 39-47 (2013).
[19] H. M. Huang , S. Y. Lee, C. Y. Yeh, and C. T. Lin, “Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach,” Clinical Oral Implants Research, 13, 65-74 (2002).
[20] 莊瀚伯,「牙科植體術後骨缺型態之結構分析」,國立中央大學機械工程學系,碩士論文,民國 95 年。
[21] W. C. C. Lee, J. M. Doocey, R. Brånemark, C. J. Adam, J. H. Evans, M. J. Pearcy, and L. A. Frossard, “FE stress analysis of the interface between the bone and an osseointegrated implant for amputees – Implications to refine the rehabilitation program,” Clinical Biomechanics, 23, 1243-1250 (2008).
[22] L. Zheng, J. M. Luo, B. C. Yang, J. Y. Chen, and X. D. Zhang, “3D Finite Element Analysis of Bone Stress around Distally Osteointegrated Implant for Artificial Limb Attachment,” Key Engineering Materials, 288-289, 653-656 (2005).
[23] M. Zhang, X. Dong, and Y. Fan, “Stress Analysis of Osseointegrated Transfemoral Prosthesis:A Finite Element Model,” Pro cesloodrys of 27th Annual Conference on Engineering in Medicine and Biology, 4060-4063 (2005).
[24] L. Meirovitch, Fundamentals of Vibrations., McGraw-Hill, New York (2001).
[25] N. Meredith, D. Alleyne, and P. Cawley, “Quantitative Determination of the Stability of the Implant‐tissue Interface Using Resonance Frequency Analysis,” Clin Oral Implants Res, 7(3), 261-267 (1996).
[26] 劉晉奇、褚晴暉,有限元素分析與 ANSYS 的工程應用,滄海,臺中 (2006)。
[27] 康淵、陳信吉,ANSYS 入門,臺北,全華(2008)。
[28] 元 智 大 學 徐 業 良 教 授 : 有 限 元 素 分 析 之 一 般 程 序 。20190120,https://www.youtube.com/watch?v=XPNFQaQ00ug
[29] H.H.Lee, Finite element simulations with ANSYS Workbench 12., McGraw-Hill., Taipei (2010).
[30] 謝易珊,「結構振型探討牙科植體術後臨床骨缺損」,國立中央大學機械工程學系,碩士論文,民國 101 年。
[31] 王栢村,電腦輔助工程分析之實務與應用,全華,臺北(2005)。
[32] 王栢村,振動學,全華,臺北(2002)。
[33] G. O. Glória, M. C. A. Teles, A. C. C. Neves, C. M. F. Vieira, F. P. D. Lopes, M. A. Gomes, F. M. Margem, and S. N. Monteiro, “Bending test in epoxy composites reinforced with continuous and aligned PALF fibers,” Journal of Materials Research and Technology, 306, 1-6 (2017).
[34] N. O. R. Maciel, J. B. Ferreira, J. S. Vieira, C. G. D. Ribeiro, F. P. D. Lopes, F. M. Margem, S. N. Monteiro, C. M. F. Vieira, and L. C. Silva, “Comparative tensile strength analysis between epoxy composites reinforced with curaua fiber and glass fiber,” Journal of Materials Research and Technology, 461, 1-5 (2018).
[35] B. M. Willie, R. D. Bloebaum, W. R. Bireley, K. N. Bachus, and A. A. Hofmann, “Determining relevance of a weight-bearing ovine model for bone ingrowth assessment,” Journal of Biomedical Materials Research, 69A, 567-576 (2004).
[36] T. J. Shelton, J. P. Beck, R. D. Bloebaum, and K. N. Bachus, “Percutaneous osseointegrated prostheses for amputees: Limb compensation in a 12-month ovine model,” Journal of Biomechanics, 44, 2601-2606 (2011).
[37] V. Varghese, “Finite element based design of hip joint prosthesis,” Rourkela National Institute of Technology Department of Biotechnology & Medical Engineering, Master of Technology, 1-47 (2011).
[38] T. Suzuki, I. Kanno, J. J. Loverich, H. Kotera, and K. Wasa, “Characterization of Pb(Zr,Ti)O3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications,” Sensors and Actuators, A 125, 382-386 (2006).
[39] S. Checa, P. J. Prendergast, and G. N. Duda, “Inter-species investigation of the mechano-regulation of bone healing: Comparison of secondary bone healing in sheep and rat,” Journal of Biomechanics, 44, 1237-1245 (2011).
[40] Y. M. Lam, O. M. Pearson, C. W. Marean, and X. Chen, “Bone density studies in zooarchaeology,” Journal of Archaeological Science, 30, 1701-1708 (2003).
[41] S. Li, Y. Su, X. Zhu, H. Jin, Q. Ouyang, and D. Zhang, “Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotubes reinforced 6061 aluminum matrix composites.” Materials & Design, 107, 130-138 (2016).
[42] A. Shirazi-Adl, M. Dammak, and G. Paiement, “Experimental determination of friction characteristics at the trabecular bone/porous-coated metal interface in cementless implants.” Journal of Biomedical Materials Research, 27, 167-175 (1993).
[43] 李偉豪,「 手持式電磁型態植體骨整合檢測裝置暨驗證」, 國立中央大學機械工程學系,碩士論文,民國 109 年。
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2020-5-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明