博碩士論文 106332605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.188.62.10
姓名 拉維雅(Lavinia Russell Clemente)  查詢紙本館藏   畢業系所 應用材料科學國際研究生碩士學位學程
論文名稱 On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis
(On the Fabrication of Three-Dimensional Nickel-Zinc alloys by electroplating and Their Performance of Hydrogen evolution in Alkaline Water Electrolysis)
相關論文
★ 鋁鈧濺鍍薄膜中鈧含量對其微結構、光反射性與腐蝕性質之影響★ 鍍金發泡鎳質子交換膜燃料電池之電池操作溫度、陰極加濕溫度、陰極計量比對其性能影響之研究
★ 1kW質子交換膜商用電堆中四個特徵區段單電池之電化學交流阻抗圖譜診斷★ 碳酸鹽沉澱製備Ba0.5Sr0.5Co0.8Fe0.2O3 及其在滲透銀前後之陰極特性比較
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究中使用微陽極引導析鍍(MAGE)來製造3維的鎳鋅合金。此製程以含0.5M鋅離子與0.25 M – 1.00 M鎳離子之氯化鹽為鍍浴,然而本製程與一般的傳統的平板電鍍不同。它屬於局部電化學析度(LECD),是在不對稱性電場中以高電流密度進行。所製得之鎳鋅合金,其表面形貌由掃描式電子顯微鏡觀察;合金之化學組成,則使用能量色散X射線譜來分析;合金的結晶構造則由X光繞射分析,鑑定其結晶相組成。研究結果顯示: 當渡浴中鎳離子濃度增加,則製得合金微柱中的鎳含量也隨之增加;在鎳含量較高的微柱,其柱直徑較小,表面較粗糙。XRD分析顯示: 鎳鋅合金微柱主要由γ相的結構組成、至於鎳含量較低的合金中則含有純鋅相共存。為理解電鍍過程中的電場分布,此研究使用COMSOL Multiphysics 5.2商用軟體來模擬電場之強度與分佈。此外,動態陰極極化曲線研究則可提供鎳鋅合金的異常共鍍機制。
已知鎳鋅合金在析氫反應中,過電位很低,並且具有極高的交換電流密度,因此廣用為鹼性電解水產氫的陰極催化劑材料。在本研究中以MAGE製造之鎳鋅合金,嘗試作為電解水產氫的應用研究,以循環伏安法和Tafel極化分析法來檢測在這些合金在鹼性水溶液中的產氫性能;同時使用掃描式電子顯微鏡、能量色散X射線譜、X光繞射分析來比對合金產氫前後的表面型態變化和晶體結構,以評估其產氫之壽命。結果顯示,鎳含量28 at.%的鎳鋅合金有最大的交換電流密度(1.94 mA/cm2)。由於其成分的合金對於HER電催化反應擁有高穩定性,因此可作為最具潛力的鹼性水電解之產氫材料。 從循環伏安法中顯示:含有28 at.% 鎳的鎳鋅合金在鹼性水溶液中縱使進行了1000次循環,其反應活性也沒有絲毫降低。
摘要(英) A process named micro-anode guided electrodeposition (MAGE) was adopted to fabricate three-dimensional (3-D) nickel-zinc alloys in this work. This process was performed in the chloride baths containing 0.50 M [Zn2+] and [Ni2+] ranging in 0.25 M – 1.00 M. It belongs to one of localized electrochemical deposition (LECD) carried out under high current density in an asymmetric electrical field compared to the traditional planar electrochemical plating. The surface morphology, chemical composition, and the crystallographic phase composition of the 3D Ni-Zn alloys was examined using SEM, EDS and XRD respectively. It was found that the alloys containing higher nickel content reveal a rougher surface with a smaller diameter. With increasing the [Ni2+] concentration in the electrolyte, the Ni-content in the alloys increases. Analysis by XRD indicated that the Ni-Zn alloys are major consisting of γ-phase and some of them display a co-existence of pure Zn-phase from the baths with diluted [Ni2+] concentration. One commercial software (i.e., COMSOL Multiphysics 5.2) was used to simulate the strength and distribution of the electric field in the MAGE process. This simulation provided a quantitatively asymmetric distribution of the electric field. In addition, the study of cathodic polarization provided useful information to realize the mechanism of Ni-Zn electrodeposition, which is classified as the anomalous electroplating.
Nickel-zinc alloys are well known catalyst to produce hydrogen gas in the alkaline water electrolysis because of high exchange current density and low over-potential of the hydrogen evolution reaction (HER). Techniques of cyclic voltammetry and Tafel polarization were conducted in the alkaline solution to study the availability of the Ni-Zn alloys to produce hydrogen gas. Prior to and post water electrolysis, the Ni-Zn alloys were examined using SEM, EDS and XRD to investigate the change their surface morphology, crystalline structure for estimation of their life. The alloy containing 28 at.% Ni was found to depict the highest exchange current density (i.e., at 1.94 mA/cm2) among the Ni-Zn alloys. This alloy 28 at.% Ni is considered as a very good candidate of cathode material in the alkaline water electrolysis due to the extreme stability of the electrochemical catalytic reactivity to the HER. Resultant from CV study of the Ni-Zn alloys with 28 at.% Ni, the reactivity remains no loss even it have withstood 1000 cycles in the alkaline water.
關鍵字(中) ★ Hydrogen evolution
★ electrodeposition
★ Nickel
★ Zinc
★ Raney Nickel
關鍵字(英)
論文目次 Table of Contents

摘要 i
Abstract ii
List of Symbols and Abbreviations iii
Acknowledgements iv
List of Figures vii
List of Tables x
Chapter 1. Introduction 1
1.1 Electrochemical deposition of micro-features 1
1.1.1 Localized electrochemical deposition 1
1.1.2 Factors affecting electrodeposition rate and profile 2
1.2 Types of alloy deposition categorized by Brenner 4
1.2.1 Normal alloy deposition 4
1.2.2 Abnormal alloy deposition 5
1.3 Global energy source and needs 6
1.4 Hydrogen production 7
1.4.1 Hydrogen power 7
1.4.2 Fundamentals of alkaline water electrolysis 8
1.5 Raney nickel 9
Chapter 2. Motivation 10
2.1 Water electrolysis shortcomings 10
2.2 Cathode design 10
Chapter 3. Literature review 12
3.1 Electrodeposition of Ni-Zn alloys 12
3.1.1 Effect of nickel and zinc concentrations in the electrolyte bath on the composition of the alloys 12
3.1.2 Anomalous electrodeposition of Ni-Zn alloy 13
3.1.3 Raney nickel 14
3.2 Ni-Zn alloy structure, phase and composition 15
3.2.1 Effect of current density on Ni-Zn alloys 15
3.2.2 Ni-Zn alloy phase diagram 16
3.3 Hydrogen evolution reaction (HER) of Ni-based alloys 17
3.3.1 Effect of Nickel grain size on HER 17
3.3.2 Effect of shapes of various Ni structures on HER 18
3.3.3 Effect of pore distribution on the surface of a catalyst for HER 21
Chapter 4. Experimental details 23
4.1 Flowchart of the experiment 23
4.2. Chemicals and electrodeposition process 24
4.3 Characterization of nickel-zinc alloying wires 25
4.3.1 Scanning electron microscopy analysis (SEM) 25
4.3.2 Energy dispersive X-ray spectroscopy analysis (EDS) 26
4.3.3 X-ray diffraction analysis (XRD) 26
4.4 Simulation of electrical field strength 28
4.5 Electrochemical measurements 28
4.5.1 Electrodeposition process 28
4.5.2 Hydrogen evolution reaction process 29
4.6 Alkaline water electrolysis 30
4.7 Calculation of Tafel parameters 32
Chapter 5. Results and discussion 33
5.1 Characterization of Ni-Zn alloying wires 33
5.1.1 Analysis through scanning electron microscopy (SEM) 33
5.1.2 Energy dispersive X-ray spectroscopy analysis (EDS) 34
5.1.3 X-ray diffraction analysis (XRD) 35
5.2 Simulation of electric field strength 37
5.3 Electrochemical measurements for the electrodeposition process 39
5.4 Hydrogen evolution reaction of Ni-Zn alloying wires in alkaline water 41
5.4.1 Surface, composition and structure analysis 41
5.4.2 Cyclic voltammetry measurements 45
5.4.3 Tafel plot 49
5.4.4 Hydrogen volume 51
Chapter 6: Conclusion 52
References 53
Appendix A: Literature survey 59
參考文獻 References

[1] Madden, J. D., Lafontaine, S. R., & Hunter, I. W. (1995, October). Fabrication by electrodeposition: building 3D structures and polymer actuators. In MHS′95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (pp. 77-81). IEEE.
[2] Madden, J. D., & Hunter, I. W. (1996). Three-dimensional microfabrication by localized electrochemical deposition. Journal of microelectromechanical systems, 5(1), 24-32.
[3] Pletcher, D., Greff, R., Peat, R., Peter, L. M., & Robinson, J. (2001). Instrumental methods in electrochemistry. Elsevier.
[4] Atkins, P. W., De Paula, J., & Keeler, J. (2018). Atkins′ physical chemistry. Oxford university press.
[5] Wightman, R. M., Wipf, D. O., & Bard, A. J. (1989). Electroanalytical chemistry, vol. 15. Marcel Dekker, New York.
[6] Brenner, A. (1963). A. Brenner Electrodeposition of Alloys, Vol. II.
[7] Landolt, D. (1994). Electrochemical and materials science aspects of alloy deposition. Electrochimica Acta, 39(8-9), 1075-1090.
[8] Global Energy and CO2 Status Report; International Energy Agency: Paris, France, 2018.
[9] Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/).
[10] Winter, C. J. (2009). Hydrogen energy—Abundant, efficient, clean: A debate over the energy-system-of-change. International journal of hydrogen energy, 34(14), S1-S52.
[11] Rajeshwar, K., McConnell, R., & Licht, S. (2008). Solar hydrogen generation. Toward a Renewable Energy Future.
[12] Balat, M. (2008). Potential importance of hydrogen as a future solution to environmental and transportation problems. International journal of hydrogen energy, 33(15), 4013-4029.
[13] Pilavachi, P. A., Chatzipanagi, A. I., & Spyropoulou, A. I. (2009). Evaluation of hydrogen production methods using the analytic hierarchy process. International Journal of hydrogen energy, 34(13), 5294-5303.
[14] Ivy, J. (2004). Summary of electrolytic hydrogen production: milestone completion report (No. NREL/MP-560-36734). National Renewable Energy Lab., Golden, CO (US).
[15] Barreto, L., Makihira, A., & Riahi, K. (2003). The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy, 28(3), 267-284.
[16] Ramachandran, R., & Menon, R. K. (1998). An overview of industrial uses of hydrogen. International Journal of Hydrogen Energy, 23(7), 593-598.
[17] Eliezer, D., Eliaz, N., Senkov, O. N., & Froes, F. H. (2000). Positive effects of hydrogen in metals. Materials Science and Engineering: A, 280(1), 220-224.
[18] Oldham, K., & Myland, J. (2012). Fundamentals of electrochemical science. Elsevier.
[19] Bockris, J. M., & Conway, B. E. (1981). Electrochemical Materials Science(Comprehensive Treatise of Electrochemistry: Vol. 4).
[20] Zeng, K., & Zhang, D. (2010). Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in energy and combustion science, 36(3), 307-326.
[21] Lasia, A. (2010). Hydrogen evolution reaction. Handbook of fuel cells.
[22] Nørskov, J. K., Bligaard, T., Logadottir, A., Kitchin, J. R., Chen, J. G., Pandelov, S., & Stimming, U. (2005). Trends in the exchange current for hydrogen evolution. Journal of The Electrochemical Society, 152(3), J23-J26.
[23] Bonde, J., Moses, P. G., Jaramillo, T. F., Nørskov, J. K., & Chorkendorff, I. (2009). Hydrogen evolution on nano-particulate transition metal sulfides. Faraday discussions, 140, 219-231.
[24] Choi, C. L., Feng, J., Li, Y., Wu, J., Zak, A., Tenne, R., & Dai, H. (2013). WS 2 nanoflakes from nanotubes for electrocatalysis. Nano Research, 6(12), 921-928.
[25] Kong, D., Cha, J. J., Wang, H., Lee, H. R., & Cui, Y. (2013). First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy & Environmental Science, 6(12), 3553-3558.
[26] Kong, D., Wang, H., Lu, Z., & Cui, Y. (2014). CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction. Journal of the American Chemical Society, 136(13), 4897-4900.
[27] Zhang, Y., Gong, Q., Li, L., Yang, H., Li, Y., & Wang, Q. (2015). MoSe 2 porous microspheres comprising monolayer flakes with high electrocatalytic activity. Nano Research, 8(4), 1108-1115.
[28] Gong, M., & Dai, H. (2015). A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 8(1), 23-39.
[29] Greeley, J., & Mavrikakis, M. (2004). Alloy catalysts designed from first principles. Nature materials, 3(11), 810.
[30] Greeley, J., Nørskov, J. K., & Mavrikakis, M. (2002). Electronic structure and catalysis on metal surfaces. Annual review of physical chemistry, 53(1), 319-348.
[31] LeRoy, R. L., Janjua, M. B. I., Renaud, R., & Leuenberger, U. (1979). Analysis of Time‐Variation Effects in Water Electrolyzers. Journal of The Electrochemical Society, 126(10), 1674-1682.
[32] Soares, D. M., Teschke, O., & Torriani, I. (1992). Hydride effect on the kinetics of the hydrogen evolution reaction on nickel cathodes in alkaline media. Journal of The Electrochemical Society, 139(1), 98-105.
[33] Ahn, S. H., Choi, I., Park, H. Y., Hwang, S. J., Yoo, S. J., Cho, E., ... & Jang, J. H. (2013). Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chemical communications, 49(81), 9323-9325
[34] Hong, S. H., Ahn, S. H., Choi, J., Kim, J. Y., Kim, H. Y., Kim, H. J., … & Kim, S. K. (2015). High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Applied Surface Science, 349, 629-635.
[35] Vogt, H., & Balzer, R. J. (2005). The bubble coverage of gas-evolving electrodes in stagnant electrolytes. Electrochimica Acta, 50(10), 2073-2079.
[36] Ahn, S. H., Hwang, S. J., Yoo, S. J., Choi, I., Kim, H. J., Jang, J. H., …& Kim. J. J. (2012). Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 22(30), 15153-15159.
[37] Benballa, M., Nils, L., Sarret, M., & Müller, C. (2000). Zinc-nickel codeposition in ammonium baths. Surface and Coating Technology, 123(1), 55-61.
[38] Lee, H. Y., & Kim, S. G. (2000). Characteristics of Ni deposition in an alkaline bath for Zn–Ni alloy deposition on steel plates. Surface and Coatings Technology, 135(1), 69-74.
[39] Fukushima, H., Akiyama, T., Higashi, K., Kammel, H., & Karimkhani, M. (1988). Electrodeposition behavior of Zn-Ni alloys from sulfate bath over a wide-range of current-density. Metall, 42(3), 242-247.
[40] Higashi, K., Fukushima, H., Urakawa, T., Adaniya, T., & Matsudo, K. (1981). Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt. Journal of the Electrochemical Society, 128(10), 2081-2085.
[41] Wu, Z., Fedrizzi, L., & Bonora, P. L. (1996). Electrochemical studies of zinc-nickel codeposition in chloride baths. Surface and Coatings Technology, 85(3), 170-174.
[42] Chen, L., & Lasia, A. (1991). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel-Zinc Alloy Electrodes. Journal of The Electrochemical Society, 138(11), 3321-3328.
[43] Mosavat, S. H., Shariat, M. H., & Bahrololoom, M. E. (2012). Study of corrosion performance of electrodeposited nanocrystalline Zn-Ni alloy coatings. Corrosion Science, 59, 81-87.
[44] Okamoto, H. (2003). Ni-Zn (nickel-zinc). Journal of phase equilibria, 24(3), 280-281.
[45] Burchardt, T. (2001). Hydrogen evolution on NiPx alloys: the influence of sorbed hydrogen. International Journal of Hydrogen Energy, 26(11), 1193-1198.
[46] Burchardt, T., Hansen, V., & Våland, T. (2001). Microstructure and catalytic activity towards the hydrogen evolution reaction of electrodeposited NiPx alloys. Electrochimica Acta, 46(18), 2761-2766.
[47] Paseka, I. (1995). Evolution of hydrogen and its sorption on remarkable active amorphous smooth Ni P (x) electrodes. Electrochimica Acta, 40(11), 1633-1640.
[48] Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 28(8), 988-994.
[49] Hang, T., Hu, A., Ling, H., Li, M., & Mao, D. (2010). Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Applied Surface Science, 256(8), 2400-2404.
[50] Xu, J., Zhou, W., Li, Z., Wang, J., & Ma, J. (2009). Biogas reforming for hydrogen production over nickel and cobalt bimetallic catalysts. International Journal of Hydrogen Energy, 34(16), 6646-6654.
[51] Ciou, Y. J., Hwang, Y. R., Lin, J. C., Chen, S. J., & Tseng, Y. T. (2018). Comparison of simulation and experimental results for the deposition orientation in localized electrochemical deposition. Japanese Journal of Applied Physics, 57(11), 117301.
[52] Lide, D. R. (2004). CRC Handbook of Chemistry and Physics. 85th edition. vol. 85, 6-10
[53] Tian, W., Xie, F. Q., Wu, X. Q., & Yang, Z. Z. (2009). Study on corrosion resistance of electroplating zinc–nickel alloy coatings. Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, 41(3), 251-254.
[54] Chandrasekar, M. S., Srinivasan, S., & Pushpavanam, M. (2009). Properties of zinc alloy electrodeposits produced from acid and alkaline electrolytes. Journal of solid state electrochemistry, 13(5), 781-789.
[55] Hall, D. E. (1983). Electrodeposited Zinc--Nickel Alloy Coatings--a Review. Plat. Surf. Finish., 70(11), 59-65.
[56] Tsybulskaya, L. S., Gaevskaya, T. V., Purovskaya, O. G., & Byk, T. V. (2008). Electrochemical deposition of zinc–nickel alloy coatings in a polyligand alkaline bath. Surface and Coatings Technology, 203(3-4), 234-239.
[57] Fukushima, H., Akiyama, T., Higashi, K., Kammel, H., & Karimkhani, M. (1988). Electrodeposition behavior of Zn-Ni Alloys from sulfate bath over a wide-range of current-density. Metall, 42(3), 242-247.
[58] Higashi, K., Fukushima, H., Urakawa, T., Adaniya, T., & Matsudo, K. (1981). Mechanism of the electrodeposition of zinc alloys containing a small amount of cobalt. Journal of the Electrochemical Society, 128(10), 2081-2085.
[59] Shibuya, A., & Kurimoto, T. (1982). Electrodeposition of Ni--Zn Alloy at High Current Densities. J. Met. Finish. Soc. Jpn., 33(10), 544-549.
[60] Siwek, K. I., Eugénio, S., Santos, D. M. F., Silva, M. T., & Montemor, M. F. (2019). 3D nickel foams with controlled morphologies for hydrogen evolution reaction in highly alkaline media. International Journal of Hydrogen Energy, 44(3), 1701-1709.
[61] Tao, S., Yang, F., Schuch, J., Jaegermann, W., & Kaiser, B. (2018). Electrodeposition of Nickel Nanoparticles for the Alkaline Hydrogen Evolution Reaction: Correlating Electrocatalytic Behavior and Chemical Composition. ChemSusChem, 11(5), 948-958.
[62] Ngamlerdpokin, K., & Tantavichet, N. (2014). Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. International Journal of Hydrogen Energy, 39(6), 2505-2515.
[63] Lupi, C., Dell′Era, A., & Pasquali, M. (2009). Nickel–cobalt electrodeposited alloys for hydrogen evolution in alkaline media. International Journal of Hydrogen Energy, 34(5), 2101-2106.
[64] Sheela, G., Pushpavanam, M., & Pushpavanam, S. (2002). Zinc–nickel alloy electrodeposits for water electrolysis. International Journal of Hydrogen Energy, 27(6), 627-633.
[65] Shervedani, R. K., & Lasia, A. (1997). Kinetics of Hydrogen Evolution Reaction on Nickel‐Zinc‐Phosphorous Electrodes. Journal of the Electrochemical Society, 144(8), 2652-2657.
[66] Chen, L., & Lasia, A. (1992). Study of the Kinetics of Hydrogen Evolution Reaction on Nickel‐Zinc Powder Electrodes. Journal of the Electrochemical Society, 139(11), 3214-3219.
[67] Choquette, Y., Menard, H., & Brossard, L. (1989). Hydrogen discharge on a Raney nickel composite-coated electrode. International journal of hydrogen energy, 14(9), 637-642.
[68] Nash, P. (1991). Phase diagrams of binary nickel alloys. ASM International(USA), 1991,, 394.
[69] Vassilev, G. P., Gomez-Acebo, T., & Tedenac, J. C. (2000). Thermodynamic optimization of the Ni-Zn system. Journal of phase equilibria, 21(3), 287-301.
[70] Su, X., Tang, N. Y., & Toguri, J. M. (2002). Thermodynamic assessment of the Ni-Zn system. Journal of phase equilibria, 23(2), 140.
[71] Langford, J. I., & Wilson, A. J. C. (1978). Scherrer after sixty years: a survey and some new results in the determination of crystallite size. Journal of applied crystallography, 11(2), 102-113.
[72] Franceschini, E. A., Lacconi, G. I., & Corti, H. R. (2015). Kinetics of the hydrogen evolution on nickel in alkaline solution: new insight from rotating disk electrode and impedance spectroscopy analysis. Electrochimica Acta, 159, 210-218.
[73] Choquette, Y., Brossard, L., Lasia, A., & Menard, H. (1990). Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite‐Coated Electrode by AC Impedance Technique. Journal of The Electrochemical Society, 137(6), 1723-1730.
指導教授 林景崎(Lin, Jing-Chie) 審核日期 2020-4-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明