博碩士論文 105326030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.118.145.114
姓名 羅勻聘(Yun Pin Lo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 漿紙污泥與廢棄車輛破碎殘餘物共同氣化過程產能效率與污染物排放特性之研究
(Characteristics of energy yield and pollutants emission in co-gasification of paper mill sludge and automobile shredder residue(ASR))
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-13以後開放)
摘要(中) 本研究利用共同氣化處理技術探討漿紙污泥(Paper mill sludge)與廢車破碎殘餘物(Automobile shredder residue,ASR),在控制當量比(equivalence ratio,ER)、氣化溫度(700 ℃)、廢車破碎殘餘物摻混比例(0%~ 15%)等條件下,漿紙污泥與廢車破碎殘餘物共同氣化反應過程,合成氣及產氣組成特性、產物分佈特性、產能效率及重金屬排放分布特性之影響。此外,本研究於相同之控制條件下,將氣化試驗擴大規模至實廠規模,探討實廠漿紙污泥與廢車破碎殘餘物共同氣化反應過程,合成氣及產氣組成特性、產物分佈特性、產能效率及重金屬排放分布特性之影響,並針對氣化試驗產生之氣相污染物進行戴奧辛特性分析。
根據實驗室規模漿紙污泥與廢車破碎殘餘物共同氣化反應結果顯示,廢車破碎殘餘物比例為10%時,氫氣、一氧化碳比例分別為4.91 vol.%及2.06 vol.%,而添加廢車破碎殘餘物比例增加至15%,前述產氣組成分別增加為4.80 vol.% 及2.62 vol.%。在穩定階段之產氣平均熱值,添加ASR比例從10%增加至15%,氣體平均熱值從1.93 MJ/Nm3增加至2.50 MJ/Nm3,冷燃氣效率從22.67 %增加至37.81 %,根據能源轉換之結果,添加ASR比例增加,有助於共同氣化之產能效率。根據實廠規模漿紙污泥與廢車破碎殘餘物共同氣化反應結果顯示,添加比例為5% ASR時,一氧化碳及甲烷組成比例分別為2.99 vol.%及1.79 vol.%,添加ASR比例增加至15%,一氧化碳及甲烷分別增加為3.45 vol.%及 2.10 vol.%。氣體平均熱值隨著添加ASR比例增加,從1.64 MJ/Nm3增加至1.83 MJ/Nm3,冷燃氣效率從0.17 %增加至0.29 %。添加ASR比例增加,有助於熱值增加,其中添加10% ASR條件為最佳,氣體平均熱值為1.83 MJ/Nm3,冷燃氣效率為0.29 %。氣化反應過程之重金屬分布特性結果,實驗室與實廠規模之試驗結果顯示,添加廢車破碎殘餘物比例增加,固體殘餘物之Cu、Zn及Cr等重金屬含量隨之增加。此外,揮發溫度較高之金屬(如Cu、Cr等),主要分布於固體產物,分布比例均為98 %以上。
根據氣化過程氯排放特性結果顯示,氣化實驗室規模添加0%ASR,固相及液相產物中氯含量分布,分別為85.61%及14.39%,而增加10%ASR之試驗結果顯示,固相、液相及氣相產物中氯含量分布,分別為57.55%、32.12%及10.33%。添加ASR比例增加,漿紙污泥之吸附能力降低,造成固相氯含量降低。實廠規模之氯分佈特性結果顯示,添加0~15%ASR比例,氯含量主要分佈於固相當中,均約為98%以上。此外,根據戴奧辛毒性當量濃度分析結果,氣化爐之濃度較高,約為6.129ng-TEQ /Nm3,經由空污防制設備處理後,於燃燒爐及煙囪採集其排放之氣體,皆符合法規標準(0.5 ng-TEQ/Nm3),初步驗證漿紙污泥與廢車破碎殘餘物實廠共同氣化試驗之可行性。
根據本研究實驗室及實廠規模之氣化試驗結果,初步完成驗證廢車破碎殘餘物與漿紙污泥共同氣化之可行性,不僅可提昇共同氣化之氣體熱值,同時漿紙污泥中鈣含量具有吸附污染物之效果。因此,本研究結果可提供做為未來相關廢車破碎殘餘物轉換能源應用及污染物排放控制之參考依據。
摘要(英) This research investigates that automobile shredder residue (ASR) and paper mill sludge converted into energy by co gasification with controlling at equilibrium ratio (ER), temperature (700 ℃), and ASR amended ratio (0%~15%) in lab scale and full scale gasifier. The producer gas composition, product distribution, energy yield efficiency, pollutants (heavy metal and chlorine) partitioning characterization, and dioxin characteristics analysis were all evaluated.
In the case of co gasification of 10% ASR mixed paper mill sludge, the H2 and CO composition were 4.91 vol.% and 2.06 vol.%, respectively. With 15 %ASR amended ratio, the H2 and CO composition were varied to 4.80 vol.% and 2.62 vol.%, respectively. The average heat value of syngas increased from 1.93 MJ/Nm3 to 2.50 MJ/Nm3 with an increase in ASR addition from 10% to 15% as well as the cold gas efficiency (CGE) increased from 22.67 % to 37.81 %.Based on energy conversion results,increasing the ASR amended ratio, it could enhance the energy yield efficiency in co-gasification of ASR and paper mill sludge.According to the a full scale gasifier, the H2 and CH4 production were increased from 2.99 vol.% to 3.45 vol.% and from 1.79 vol.% to 2.10 vol.% with an increase in ASR addition ratio from 5 % to 15 %, respectively. The heating value of gas production was increased from 1.64 MJ/Nm3 to 1.83 MJ/Nm3 with ASR addition ratio increasing from 5 % to 15 %. Cold gas efficiency (CGE) was also increased from 0.17 % to 0.29 % with an increase in ASR addition ratio. By increasing ASR addition ratio, it could enhance the heating value in co-gasification, especially for 10% ASR addition ratio. The average heating value of gas production was 1.83 MJ/Nm3 and the CGE was 0.29 %.
The heavy metal partitioning characteristics results indicated that Cu, Zn and Cr were mainly partitioned in residue phase during the lab-scale and full-scale gasification. The Cu, Zn and Cr partitioning percentages of residue phase were increased with increasing ASR amended ratio. On the other hand, the.low volatility heavy metals, such as Cu and Cr. Cu and Cr were mainly partitioned in residue phase and were approximately 98 % and above.
According to the results of the chlorine emission characteristics, in the case of without ASR addition ratio, the chlorine partitioned in the solid phase and liquid phase were 85.61 % and 14.39 %, respectively. However, in the case of 10% ASR addition amended ratio, the chlorine in the solid phase and liquid phase were decreased to 57.55 % and 32.12 %, respectively. Meanwhile, the chlorine partitoned in the gas phase was significantly increased from N.D to 10.33 % with an increase in ASR addition ratio. This was because increasing ASR addition ratio resulted in the paper mill sludge containing calcium content decreased. In case of the full-scale test, the chlorine were approximately 98 % partitioned in solid.
According to analysis results of dioxin equivalence concentration of produced gas, the dioxin concentration of syngas was 6.129 ng-TEQ /Nm3 in the gasifier that had high concentration than other facilities. After air pollution control devices (APCDs), the dioxin equivalence concentration of the flue gas sampled from combustion furnace and stack were all in compliance with regulatory thresholds (0.5 ng-TEQ/Nm3). Therefore, the feasibility of co-gasified ASR and paper mill sludge was proved by full scale plant,.
In summary, the research has proved the ASR could co-gasify paper mill sludge. It could enhance the energy conversion from co-gasification, but also could reduce air pollutants emission during co-gasification process. Therefore, the results of this study could provide the helpful information for the selection of ASR energy conversion technologies and control strategies of pollutants emission in the future.
關鍵字(中) ★ 廢車破碎殘餘物
★ 漿紙污泥
★ 共同氣化
★ 重金屬分布
★ 氯分佈
關鍵字(英)
論文目次 誌謝 I
摘要 III
Abstract V
目錄 IX
圖目錄 XIII
表目錄 XVII
第一章 前言 1
第二章 文獻回顧 5
2-1廢棄車輛拆除之廢棄物現況 5
2-1-1廢棄車輛拆除之廢棄物處理流程 5
2-1-2國內外廢棄車輛拆除處理現況 8
2-2 國內外廢棄車輛破碎殘餘物特性分析 12
2-3 漿紙污泥現況分析 23
2-3-1 漿紙污泥處理現況 23
2-3-2 漿紙污泥物化特性 25
2-4氣化技術原理及應用 27
2-5污染物去除技術 33
第三章 研究材料與方法 37
3-1 研究材料 37
3-1-1 廢車殘餘破碎物 37
3-1-2漿紙污泥 39
3-2設備與條件 40
3-2-1實驗室規模 40
3-2-2實廠規模 46
3-3分析項目與方法 50
3-3-1廢棄車輛殘餘破碎物與漿紙污泥之基本特性分析 50
3-3-2 氣化產物分析 56
3-3-3飛灰及底渣戴奧辛分析方法 66
3-3-4評估指標 69
3-3-5動力學分析 71
第四章 結果與討論 73
4-1實驗原料組成與基本分析 73
4-1-1廢車破碎殘餘物之物化特性分析 73
4-1-2漿紙污泥之物化特性分析 82
4-2 廢車破碎殘餘物及漿紙污泥熱反應動力特性分析 85
4-2-1 熱重損失之分析結果 85
4-2-2 反應活性及活化能分析 90
4-2-3 廢車破碎殘餘物熱反應過程之氣相物種分析 99
4-3漿紙污泥與廢車破碎殘餘物實驗室規模共同氣化之分析結果 105
4-3-1共同氣化反應之穩定性分析 105
4-3-2 共同氣化產能效率評估 129
4-3-3 氣化產物之污染物分布特性 136
4-4 漿紙污泥與廢車破碎殘餘物實廠規模共同氣化之分析結果 148
4-4-1產能效率評估 148
4-4-2 實廠共同氣化之產能效率評估 171
4-4-3氣化產物之污染物分布特性 179
第五章 結論與建議 213
5-1結論 213
5-1-1廢車破碎殘餘物與漿紙污泥基本特性分析及反應動力之結果 213
5-1-2實驗室規模ASR共同氣化產能效率之結果 214
5-1-3 實廠規模ASR共同氣化產能效率之結果 215
5-1-4 污染物分布特性之結果 216
5-2 建議 218
5-2-1實驗室規模 218
5-2-2實廠規模 218
參考文獻 219
附 錄 227
附錄一 共同氣化之氣體組成變化(試驗室規模0%ASR) 229
附錄二 共同氣化之氣體組成變化(試驗室規模5%ASR) 230
附錄三 共同氣化之氣體組成變化(試驗室規模10%ASR) 231
附錄四 共同氣化之氣體組成變化(試驗室規模15%ASR) 232
附錄五 共同氣化之氣體組成變化(實廠規模0%ASR) 233
附錄六 共同氣化之氣體組成變化(實廠規模5%ASR) 234
附錄七 共同氣化之氣體組成變化(實廠規模10%ASR) 235
附錄八 共同氣化之氣體組成變化(實廠規模15%ASR) 236
參考文獻 Ahmed, N., Wenzel, H., Hansen, J.B., 2014. Characterization of Shredder Residues generated and deposited in Denmark. Waste Manag 34, 1279-1288.
Almeida, A., Neto, P., Pereira, I., Ribeiro, A., Pilão, R., 2017. Effect of temperature on the gasification of olive bagasse particles. Journal of the Energy Institute 92, 153-160.
Anukam, A., Mamphweli, S., Reddy, P., Meyer, E., Okoh, O., 2016. Pre-processing of sugarcane bagasse for gasification in a downdraft biomass gasifier system: A comprehensive review. Renewable and Sustainable Energy Reviews 66, 775-801.
Berzi, L., Delogu, M., Giorgetti, A., Pierini, M., 2013. On-field investigation and process modelling of end-of-life vehicles treatment in the context of Italian craft-type authorized treatment facilities. Waste Manag 33, 892-906.
Boughton, B., 2007. Evaluation of shredder residue as cement manufacturing feedstock. Resources, Conservation and Recycling 51, 621-642.
Chiang, K.-Y., Lu, C.-H., Liao, C.-K., Hsien-Ruen Ger, R., 2016. Characteristics of hydrogen energy yield by co-gasified of sewage sludge and paper-mill sludge in a commercial scale plant. International Journal of Hydrogen Energy 41, 21641-21648.
Cossu, R., Fiore, S., Lai, T., Luciano, A., Mancini, G., Ruffino, B., Viotti, P., Zanetti, M.C., 2014. Review of Italian experience on automotive shredder residue characterization and management. Waste Manag 34, 1752-1762.
Cossu, R., Lai, T., 2015. Automotive shredder residue (ASR) management: An overview. Waste Manag 45, 143-151.
Déparrois, N., Singh, P., Burra, K.G., Gupta, A.K., 2019. Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2. Applied Energy 246, 1-10.
Dębek, C., Walendziewski, J., 2015. Hydrorefining of oil from pyrolysis of whole tyres for passenger cars and vans. Fuel 159, 659-665.
Deng, L., Zhang, T., Che, D., 2013. Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. Fuel Processing Technology 106, 712-720.
Despeisse, M., Kishita, Y., Nakano, M., Barwood, M., 2015. Towards a Circular Economy for End-of-Life Vehicles: A Comparative Study UK – Japan. Procedia CIRP 29, 668-673.
Donaj, P., Yang, W., Blasiak, W., Forsgren, C., 2010. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification. J Hazard Mater 182, 80-89.
Edo, M., Aracil, I., Font, R., Anzano, M., Fullana, A., Collina, E., 2013. Viability study of automobile shredder residue as fuel. J Hazard Mater 260, 819-824.
Evangelopoulos, P., Sophonrat, N., Jilvero, H., Yang, W., 2018. Investigation on the low-temperature pyrolysis of automotive shredder residue (ASR) for energy recovery and metal recycling. Waste Manag 76, 507-515.
Filippis, D., F., P., Borgianni, C., Paolucci, M., 2003. Automobile shredder residue gasification. Waste management & research, 21(5), 459-466.
Freda, C., Cornacchia, G., Romanelli, A., Valerio, V., Grieco, M., 2018. Sewage sludge gasification in a bench scale rotary kiln. Fuel 212, 88-94.
Gent, M.R., Menendez, M., Muniz, H., Torno, S., 2015. Recycling of a fine, heavy fluff automobile shredder residue by density and differential fragmentation. Waste Manag 43, 421-433.
George, J., Arun, P., Muraleedharan, C., 2018. Experimental investigation on co-gasification of coffee husk and sawdust in a bubbling fluidised bed gasifier. Journal of the Energy Institute.
Guo, Q., Zhang, X., Li, C., Liu, X., Li, J., 2012. TG-MS study of the thermo-oxidative behavior of plastic automobile shredder residues. J Hazard Mater 209-210, 443-448.
Harder, M.K., Forton, O.T., 2007. A critical review of developments in the pyrolysis of automotive shredder residue. Journal of Analytical and Applied Pyrolysis 79, 387-394.
Haydary, J., Susa, D., Gelinger, V., Čacho, F., 2016. Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor. Journal of Environmental Chemical Engineering 4, 965-972.
Issac, M., Dai, B., Zhang, L., 2019. Kinetics underpinning the C-CO2 gasification of waste tyre char and its interaction with coal char upon co-gasification. Fuel 256, 115991.
Jayaraman, K., Gokalp, I., 2015. Effect of char generation method on steam, CO2 and blended mixture gasification of high ash Turkish coals. Fuel 153, 320-327.
Khodier, A., Williams, K., Dallison, N., 2018. Challenges around automotive shredder residue production and disposal. Waste Manag 73, 566-573.
Kumagai, S., Alvarez, J., Blanco, P.H., Wu, C., Yoshioka, T., Olazar, M., Williams, P.T., 2015. Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis–gasification of a biomass/plastic mixture. Journal of Analytical and Applied Pyrolysis 113, 15-21.
Kumar, V., Sutherland, J.W., 2009. Development and assessment of strategies to ensure economic sustainability of the U.S. automotive recovery infrastructure. Resources, Conservation and Recycling 53, 470-477.
Kuramochi, H., Nakajima, D., Goto, S., Sugita, K., Wu, W., Kawamoto, K., 2008. HCl emission during co-pyrolysis of demolition wood with a small amount of PVC film and the effect of wood constituents on HCl emission reduction. Fuel 87, 3155-3157.
López, A., de Marco, I., Caballero, B.M., Laresgoiti, M.F., Adrados, A., 2011. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Processing Technology 92, 253-260.
Lee, H.Y., 2007. Characteristics and heavy metal leaching of ash generated from incineration of automobile shredder residue. J Hazard Mater 147, 570-575.
Likon, M., Trebe, P., 2012. Recent Advances in Paper Mill Sludge Management.
Lin, K.-S., Chowdhury, S., Wang, Z.-P., 2010. Catalytic gasification of automotive shredder residues with hydrogen generation. Journal of Power Sources 195, 6016-6023.
Liu, Q., Hu, C., Peng, B., Liu, C., Li, Z., Wu, K., Zhang, H., Xiao, R., 2019. High H2/CO ratio syngas production from chemical looping co-gasification of biomass and polyethylene with CaO/Fe2O3 oxygen carrier. Energy Conversion and Management 199, 111951.
Lu, P., Huang, Q., Bourtsalas, A.C.T., Themelis, N.J., Chi, Y., Yan, J., 2019. Review on fate of chlorine during thermal processing of solid wastes. J Environ Sci (China) 78, 13-28.
Levchik, G.F., Si, K., Levchik, S.V., Camino, G., Wilkie, C.A., 1999. The correlation between cross-linking and thermal stability: Cross-linked polystyrenes and polymethacrylates. Polymer Degradation and Stability 65, 395-403.
Mallampati, S.R., Lee, B.H., Mitoma, Y., Simion, C., 2017. Selective sequential separation of ABS/HIPS and PVC from automobile and electronic waste shredder residue by hybrid nano-Fe/Ca/CaO assisted ozonisation process. Waste Manag 60, 428-438.
Mancini, G., Tamma, R., Viotti, P., 2010. Thermal process of fluff: preliminary tests on a full-scale treatment plant. Waste Manag 30, 1670-1682.
Mancini, G., Viotti, P., Luciano, A., Fino, D., 2014. On the ASR and ASR thermal residues characterization of full scale treatment plant. Waste Manag 34, 448-457.
Masnadi, M.S., Grace, J.R., Bi, X.T., Lim, C.J., Ellis, N., Li, Y.H., Watkinson, A.P., 2015. From coal towards renewables: Catalytic/synergistic effects during steam co-gasification of switchgrass and coal in a pilot-scale bubbling fluidized bed. Renewable Energy 83, 918-930.
Molino, A., Chianese, S., Musmarra, D., 2016. Biomass gasification technology: The state of the art overview. Journal of Energy Chemistry 25, 10-25.
Morselli, L., Santini, A., Passarini, F., Vassura, I., 2010. Automotive shredder residue (ASR) characterization for a valuable management. Waste Management 30, 2228-2234.
Morselli, L., Santini, A., Passarini, F., Vassura, I., 2010. Automotive shredder residue (ASR) characterization for a valuable management. Waste Manag 30, 2228-2234.
Motta, I.L., Miranda, N.T., Maciel Filho, R., Wolf Maciel, M.R., 2018. Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects. Renewable and Sustainable Energy Reviews 94, 998-1023.
Ni, F., Chen, M., 2014. Studies on pyrolysis and gasification of automobile shredder residue in China. Waste Management & Research 32, 980-987.
Notarnicola, M., Cornacchia, G., De Gisi, S., Di Canio, F., Freda, C., Garzone, P., Martino, M., Valerio, V., Villone, A., 2017. Pyrolysis of automotive shredder residue in a bench scale rotary kiln. Waste Manag 65, 92-103.
Ouadi, M., Brammer, J.G., Kay, M., Hornung, A., 2013. Fixed bed downdraft gasification of paper industry wastes. Applied Energy 103, 692-699.
Perondi, D., Restelatto, D., Manera, C., Godinho, M., Zattera, A.J., Faria Vilela, A.C., 2019. The role of CaO and its influence on chlorine during the thermochemical conversion of shredder residue. Process Safety and Environmental Protection 122, 58-67.
Rey, L., Conesa, J.A., Aracil, I., Garrido, M.A., Ortuno, N., 2016. Pollutant formation in the pyrolysis and combustion of Automotive Shredder Residue. Waste Manag 56, 376-383.
Ruffino, B., Fiore, S., Zanetti, M.C., 2014. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: results and cost assessment. Waste Manag 34, 148-155.
Roy, C., Chaala, A., 2001. Vacuum pyrolysis of automobile shredder residues. Resources, Conservation and Recycling 32, 1-27.
Ruoppolo, G., Ammendola, P., Chirone, R., Miccio, F., 2012. H(2)-rich syngas production by fluidized bed gasification of biomass and plastic fuel. Waste Manag 32, 724-732.
Sakai, S.-i., Yoshida, H., Hiratsuka, J., Vandecasteele, C., Kohlmeyer, R., Rotter, V.S., Passarini, F., Santini, A., Peeler, M., Li, J., Oh, G.-J., Chi, N.K., Bastian, L., Moore, S., Kajiwara, N., Takigami, H., Itai, T., Takahashi, S., Tanabe, S., Tomoda, K., Hirakawa, T., Hirai, Y., Asari, M., Yano, J., 2013. An international comparative study of end-of-life vehicle (ELV) recycling systems. Journal of Material Cycles and Waste Management 16, 1-20.
Santini, A., Passarini, F., Vassura, I., Serrano, D., Dufour, J., Morselli, L., 2012. Auto shredder residue recycling: Mechanical separation and pyrolysis. Waste Manag 32, 852-858.
Sato, F.E.K., Furubayashi, T., Nakata, T., 2019. Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan. Applied Energy 237, 779-794.
Singh, J., Lee, B.K., 2015. Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment. Waste Manag 38, 271-283.
Staudinger, J., Keoleian, G.A., 2001. Management of End-of Life(ELVs) in the US. Report of Center for Sustaunable System No.CSS01-01.
Sulaiman, S.A., Roslan, R., Inayat, M., Yasin Naz, M., 2018. Effect of blending ratio and catalyst loading on co-gasification of wood chips and coconut waste. Journal of the Energy Institute 91, 779-785.
Trninić, M., Stojiljković, D., Jovović, A., 2016. Biomass gasification technology: The state of the art overview.
Vigano, F., Consonni, S., Grosso, M., Rigamonti, L., 2010. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion. Waste Manag 30, 145-153.
Zhao, Q., Chen, M., 2011. A comparison of ELV recycling system in China and Japan and China′s strategies. Resources, Conservation and Recycling 57, 15-21.
Zorpas, A.A., Inglezakis, V.J., 2012. Automotive industry challenges in meeting EU 2015 environmental standard. Technology in Society 34, 55-83.
行政院環境保護署,網站:http://www.epa.gov.tw/mp.asp?=epa,2016。
李恂,應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性,國立中央大學環境工程研究所,碩士論文,桃園,2018
林亞翰,焚化爐進場生活垃圾重金屬含量分析,國立高雄第一科技大學工程科技研究所,碩士論文,2014
財團法人台灣產業服務基金會,廢棄機動車輛源頭減量分析規劃暨廢車粉碎監督營運專案工作計畫,行政院環境保護署委託研究報告,EPA-400-HA14-03-A029,2011
陳又新,下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分布特性之研究,國立中央大學環境工程研究所,碩士論文,桃園,2017
賀偉雄,廢機動車輛粉碎殘餘物製作固態衍生燃料之實證研究,國立高雄第一科技大學工程科技研究所,博士論文,2006
鄭釋緣,應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性,國立中央大學環境工程研究所,碩士論文,桃園,2018
指導教授 江康鈺 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明