博碩士論文 105326003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.15.182.217
姓名 楊孟樵(Meng-Chiao Yang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2017~2018年台灣平地與高山氣膠水溶性無機離子短時間動態變化特性
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 大氣氣膠水溶性無機離子對大氣環境影響重大,這些無機離子特性在環境中變化迅速,需要進行短時間的觀測。本文於2017年11月在豐原高中、2018年3月至4月在鹿林山大氣背景觀測站、2018年4月及5月在中央大學,以半自動方法量測氣膠水溶性無機離子,大部分時間量測PM2.5,但在豐原高中和中央大學有些時段切換量測PM10水溶性無機離子。量測結果搭配測站相關監測數據,探討氣膠的化學、物理、光學特性、和污染來源。
2018年春季鹿林山測站主要有山谷風和生質燃燒事件,相較於非事件PM2.5質量濃度的10.2 ± 6.8 μg m-3,生質燃燒事件和山谷風事件的PM2.5質量濃度分別上升至21.8 ± 6.6和20.1 ± 1.3 μg m-3。PM2.5水溶性無機離子在非事件、生質燃燒事件、山谷風事件平均濃度別為4.9 ± 3.1 μg m-3、5.7 ± 2.0 μg m-3、9.9 ± 0.7 μg m-3,顯然污染事件帶來較多的PM2.5水溶性無機離子。在豐原高中和中央大學5月高濃度事件中,PM2.5質量濃度分別為23.7 ± 6.8和21.2 ± 2.6 μg m-3,在中央大學4月的PM10質量濃度事件則達80.6 ± 5.5 μg m-3,在中央大學和豐原高中量測期間PM2.5/PM10分別約為0.3至0.6以及0.2至0.4,顯示這兩個地方粗粒徑微粒在PM10占有較大比例。比較NO3-和SO42-在微粒中占比,在PM10中NO3-大於SO42-,但在PM2.5中卻是SO42-占比較大,表示在PM10中有很多的粗粒徑NO3-。在平地監測到的NO2-多在夜間生成,且與相對濕度以及NO2濃度有較大的相關性。鹿林山的PM2.5事件主要受到生質燃燒煙團長程傳輸以及人為傳輸污染影響,在中央大學以及豐原高中的高微粒濃度普遍受到海陸風影響,特別是在夜間常因風速和邊界較低而導致污染累積。
本文發現在低相對濕度、非靜風、無雲霧的環境條件下,鹿林山大氣氣膠化學特性和山頂以上的大氣氣膠光學厚度(Aerosol Optical Depth, AOD)相關性良好(R2=0.68,p< 0.05);即使在平地地區,非靜風的環境下,大氣氣膠化學特性和整層大氣氣膠光學厚度也具有關聯性(R2=0.5,p< 0.05)。本文使用ISORROPIA Ⅱ 模式進行氣膠酸度模擬,顯示在高山主要為酸性氣膠而平地多為酸性或是中性氣膠,利用各離子莫耳濃度計算的相關性對高山或是平地氣膠水溶性無機離子結合型態做推估,顯示鹿林山在生質燃燒事件有較多的硫酸鉀、硝酸鉀,平地在微粒高濃度事件則以硝酸銨為主。
摘要(英) Water-soluble inorganic ions (WSIIs) of atmospheric aerosol have a significant effect on the atmospheric environment. These inorganic ions need to observe with high time-resolution as they change their properties rapidly in the environment. This study measured PM2.5 WSIIs with the semi-automated method at the Fengyuan High School (FHS) in November 2017, Lulin Atmospheric Background Station (LABS) in March-April 2018, and at National Central University (NCU) in April-May 2018. The measurements were toward PM2.5 most of the time; however, for some time, the system switched to PM10 WSIIs. The results accompanying related monitoring data at the stations were suitable for investigating aerosol chemistry, physics, optical properties, and source contributions.
The averages of PM2.5 mass concentrations for the events of biomass burning (BB) and mountain-valley (M-V) wind were 21.8 ± 6.6 and 20.1 ± 1.3 μg m-3, respectively, in contrast to that of non-event PM2.5 mass concentration of 10.2 ± 6.8 μg m-3. Meanwhile, the averages of PM2.5 WSIIs at non-event period, BB, and M-V wind events were 4.9 ± 3.1 μg m-3, 5.7 ± 2.0 μg m-3, and 9.9 ± 0.7 μg m-3, respectively. Obviously, pollution events brought more PM2.5 WSIIs from the comparison. In high concentration events at the FHS and NCU (May), the averages of PM2.5 mass concentrations were 23.7 ± 6.8 and 21.2 ± 2.6 μg m-3, respectively. In contrast, the high concentration event at NCU (April) was as high as 80.6 ± 5.5 μg m-3 in PM10. The PM2.5/PM10 ratios were 0.3-0.6 and 0.2-0.4 at NCU and FHS, respectively. Evidently, coarse particles were more in PM10 at both sites. Comparing the fraction of NO3- and SO42- in particles, NO3- is higher than SO42- in PM10, but the reverse is true in PM2.5. It implies that a lot of coarse NO3- existing in PM10. For monitoring results in the ground level, NO2- observed to form during nighttime and correlated well with relative humidity (RH) and NO2 concentration. The PM2.5 events were under the influences of long-range transport of BB smoke and anthropogenic pollution transports at LABS. In contrast, the land-sea breeze was mainly responsible for high particulate concentrations at NCU and FHS, especially for pollution accumulation from low wind speed and shallow boundary layer at night.
As revealed from this study, low RH, non-calm wind, and non-fog environment provided a good correlation between aerosol chemical properties and aerosol optical depth (AOD) at the summit of LABS (R2=0.7, p< 0.05). Even in the ground level, aerosol chemical properties and AOD correlated moderately with each other under a non-calm wind environment (R2=0.5, p< 0.05). The application of the ISORROPIA II model for aerosol acidity simulation indicated that mountain aerosol was acidic, and the aerosol in the ground level was more toward acidic or neutral. The computations of molar concentrations of the correlated WSIIs to infer aerosol compound form resulting in more potassium sulfate and potassium nitrate in BB events at LABS and ammonium nitrate in high particulate events in the plain area
關鍵字(中) ★ 氣膠水溶性無機離子短時間變化
★ 生質燃燒煙團
★ 山谷風
★ 氣膠光學厚度
★ PM2.5,NO2-與NO2
關鍵字(英) ★ High time-resolved water-soluble inorganic ions
★ biomass burning smoke
★ mountain-valley wind
★ Aerosol optical depth
★ PM2.5 NO2- and NO2.
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XX
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 生質燃燒 4
2.1.1 生質燃燒氣膠長程傳輸 4
2.1.2 生質燃燒氣膠化學成分特性 5
2.1.3 生質燃燒氣膠粒徑變化 6
2.1.4 生質燃燒氣膠光學特性 7
2.2 氣膠光學厚度(Aerosol Optical Depth, AOD) 7
2.3 氣膠水溶性無機離子 8
2.3.1 氣膠中和狀況與結合型態 9
2.4 高山地區氣膠與氣體 11
2.4.1 雲霧動態變化 12
2.4.2 山谷風循環 14
2.5平地地區氣膠與氣體 15
2.5.1 NO2-離子形成條件 16
2.5.2 PM10 與PM2.5水溶性離子 18
2.6 氣膠水溶性離子連續監測儀器 19
2.6.1 即時氣膠水溶性離子監測儀器 20
2.7 模擬氣膠含水量與pH值 22
2.7.1 氣膠pH值 22
2.7.2 氣膠含水量模擬 24
第三章 研究方法 27
3. 1研究架構 27
3.2 監測地點與監測週期 28
3.3 監測設備與方法 29
3.3.1 短時間氣膠水溶性無機離子監測 30
3.3.2 品保品管方法以及MDL的作法 33
3.4 大氣氣膠連續監測系統 34
3.4.1 自動監測儀器 34
3.4.2 NOAA氣膠觀測系統 36
3.4.3 積分式散光儀(Integrating Nephelometer) 37
3.4.4 微粒碳吸收光度計(PSAP) 40
3.4.5 粒徑分布監測系統 44
3.4.6 PWD22即時天氣探測儀 47
3.4.7 其他連續監測儀器 49
3.5 氣流軌跡模式(NOAA HYSPLIT) 51
3.6 ISORROPIAⅡ 模式分析 53
第四章 結果與討論 54
4.1 鹿林山氣膠水溶性無機離子短時間變化 54
4.1.1 短時間自動監測與手動監測水溶性無機離子比對 55
4.1.2 春季鹿林山氣象資料、氣體、水溶性無機離子動態變化 56
4.1.3 雲霧、山谷風及生質燃燒事件辨識方法 60
4.1.4 鹿林山氣膠水溶性離子不同軌跡來源短時間變化 61
4.2 鹿林山春季生質燃燒及山谷風事件氣膠、氣體及氣象參數動態變化 63
4.2.1 生質燃燒事件(3月16日至3月20日) 63
4.2.2 春季中國傳輸及山谷風事件(3月25日、27日、28日、29日) 78
4.3 平地氣膠水溶性無機離子短時間變化 94
4.3.1 平地地區監測氣象資料、氣體、氣膠水溶性無機離子動態變化 95
4.3.2 中央大學與豐原高中測站不同軌跡來源短時間變化 101
4.4 中央大學與豐原高中測站高濃度氣膠、氣體及氣象參數動態 103
4.4.1 豐原高濃度事件 103
4.4.2 四月高濃度事件 120
4.4.3 五月高濃度事件 161
4.5 平地地區NO2-離子形成與變化 192
4.5.1 中央大學與豐原高中測站NO2-離子短時間變化 192
4.5.2 平地地區中NH4NO2結合型態 197
4.5.3 NO2-離子與NO2氣體異質反應關係 203
4.6 探討高山與平地短時間氣膠化學成分與氣膠光學厚度關係 206
4.6.1鹿林山短時間氣膠化學成分與AOD關係 206
4.6.2平地短時間氣膠化學成分與AOD關係 210
4.7 平地與高山地區高濃度事件發生的原因和污染途徑或來源 217
第五章 結論與建議 225
5.1 結論 225
5.2 建議 228
第六章 參考文獻 229
附錄一、2018年春季鹿林山觀測間逆推軌跡圖 238
附錄二、2018年春季鹿林山觀測期間火點圖 245
附錄三、2018年中央大學測站4月PM10觀測期間逆推軌跡圖 249
附錄四、2018年中央大學測站5月PM2.5觀測期間逆推軌跡圖 252
附錄五、2017年豐原高中測站11月觀測期間逆推軌跡圖 255
附錄六、口試委員意見與回覆 258
參考文獻 Benedict, K.B., Day, D., Schwandner, F.M., Kreidenweis, S.M., Schichtel, B., Malm, W.C., Collett, J.L., 2013. Observations of atmospheric reactive nitrogen species in Rocky Mountain National Park and across northern Colorado. Atmospheric Environment 64, 66-76.
Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001. Asian chemical outflow to the Pacific in spring: Origins, pathways, and budgets. Journal of Geophysical Research: Atmospheres 106, 23097-23113.
Bhuyan, P., Barman, N., Bora, J., Daimari, R., Deka, P., Hoque, R.R., 2016. Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley. Atmospheric Environment 142, 194-209.
Bian, Y.X., Zhao, C.S., Ma, N., Chen, J., Xu, W.Y., 2014. A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmospheric Chemistry and Physics 14, 6417-6426.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science & Technology 30, 582-600.
Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.H., Klimont, Z., 2004. A technology‐based global inventory of black and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres 109.
Bougiatioti, A., Stavroulas, I., Kostenidou, E., Zarmpas, P., Theodosi, C., Kouvarakis, G., Canonaco, F., Prévôt, A., Nenes, A., Pandis, S., 2014. Processing of biomass-burning aerosol in the eastern Mediterranean during summertime. Atmospheric Chemistry and Physics 14, 4793-4807.
Chen, S.-C., Hsu, S.-C., Tsai, C.-J., Chou, C.C.K., Lin, N.-H., Lee, C.-T., Roam, G.-D., Pui, D.Y.H., 2013. Dynamic variations of ultrafine, fine and coarse particles at the Lu-Lin background site in East Asia. Atmospheric Environment 78, 154-162.
Cheng, S.-h., Yang, L.-x., Zhou, X.-h., Xue, L.-k., Gao, X.-m., Zhou, Y., Wang, W.-x., 2011. Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan, China. Atmospheric Environment 45, 4631-4640.
Chuang, M.-T., Lee, C.-T., Chou, C.C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Chuang, M.T., Chen, Y.C., Lee, C.T., Cheng, C.H., Tsai, Y.J., Chang, S.Y., Su, Z.S., 2016. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan. Environ Pollut 214, 273-281.
Chuang, M.T., Lee, C.T., Hsu, H.C., 2018. Quantifying PM2.5 from long-range transport and local pollution in Taiwan during winter monsoon: An efficient estimation method. J Environ Manage 227, 10-22.
Draxler, R., Rolph, G., 2013. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. Silver Spring, MD: NOAA Air Resources Laboratory. ready. arl. noaa. gov/HYSPLIT. php.
Giulianelli, L., Gilardoni, S., Tarozzi, L., Rinaldi, M., Decesari, S., Carbone, C., Facchini, M.C., Fuzzi, S., 2014. Fog occurrence and chemical composition in the Po valley over the last twenty years. Atmospheric Environment 98, 394-401.
Guo, H., Liu, J., Froyd, K.D., Roberts, J.M., Veres, P.R., Hayes, P.L., Jimenez, J.L., Nenes, A., Weber, R.J., 2017. Fine particle pH and gas–particle phase partitioning of inorganic species in Pasadena, California, during the 2010 CalNex campaign. Atmospheric Chemistry and Physics 17, 5703-5719.
Han, B., Zhang, R., Yang, W., Bai, Z., Ma, Z., Zhang, W., 2016. Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site. Sci Total Environ 544, 319-329.
Hao, L., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H., Miettinen, P., Komppula, M., Leskinen, A., Virtanen, A., Smith, J.N., 2013. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry. Environmental science & technology 47, 2645-2653.
Herckes, P., Marcotte, A.R., Wang, Y., Collett, J.L., 2015. Fog composition in the Central Valley of California over three decades. Atmospheric Research 151, 20-30.
Huang, W.-R., Chan, J.C.L., Wang, S.-Y., 2010. A planetary-scale land-sea breeze circulation in East Asia and the western North Pacific. Quarterly Journal of the Royal Meteorological Society 136, 1543-1553.
Huang, W.-R., Wang, S.-Y., 2013. Impact of land–sea breezes at different scales on the diurnal rainfall in Taiwan. Climate Dynamics 43, 1951-1963.
Huang, X., Qiu, R., Chan, C.K., Ravi Kant, P., 2011. Evidence of high PM2.5 strong acidity in ammonia-rich atmosphere of Guangzhou, China: Transition in pathways of ambient ammonia to form aerosol ammonium at [NH4+]/[SO42–]=1.5. Atmospheric Research 99, 488-495.
Jiang, S., Ye, X., Wang, R., Tao, Y., Ma, Z., Yang, X., Chen, J., 2018. Measurements of nonvolatile size distribution and its link to traffic soot in urban Shanghai. Sci Total Environ 615, 452-461.
Kai, Z., Yuesi, W., Tianxue, W., Yousef, M., Frank, M., 2007. Properties of nitrate, sulfate and ammonium in typical polluted atmospheric aerosols (PM10) in Beijing. Atmospheric Research 84, 67-77.
Kishcha, P., Wang, S.-H., Lin, N.-H., da Silva, A., Lin, T.-H., Lin, P.-H., Liu, G.-R., Starobinets, B., Alpert, P., 2018. Differentiating between Local and Remote Pollution over Taiwan. Aerosol and Air Quality Research 18, 1788-1798.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., 2011a. The enhancement of PM 2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric environment 45, 5784-5794.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011b. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, T., Yu, X.-Y., Kreidenweis, S.M., Malm, W.C., Collett, J.L., 2008. Semi-continuous measurement of PM2.5 ionic composition at several rural locations in the United States. Atmospheric Environment 42, 6655-6669.
Li, J., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research 108.
Li, J., Pósfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres 108, n/a-n/a.
Li, Z., Liu, Y., Lin, Y., Gautam, S., Kuo, H.-C., Tsai, C.-J., Yeh, H., Huang, W., Li, S.-W., Wu, G.-J., 2017. Development of an Automated System (PPWD/PILS) for Studying PM2.5 Water-Soluble Ions and Precursor Gases: Field Measurements in Two Cities, Taiwan. Aerosol and Air Quality Research 17, 426-443.
Lin, Y.C., Lin, C.Y., Lin, P.H., Engling, G., Lin, Y.C., Lan, Y.Y., June Chang, C.W., Kuo, T.H., Hsu, W.T., Ting, C.C., 2013. Influence of Southeast Asian biomass burning on ozone and carbon monoxide over subtropical Taiwan. Atmospheric Environment 64, 358-365.
Loría-Salazar, S.M., Panorska, A., Arnott, W.P., Barnard, J.C., Boehmler, J.M., Holmes, H.A., 2017. Toward understanding atmospheric physics impacting the relationship between columnar aerosol optical depth and near-surface PM2. 5 mass concentrations in Nevada and California, USA, during 2013. Atmospheric Environment 171, 289-300.
Ma, Y., 2004. Developments and improvements to the particle-into-liquid-sampler (PILS) and its applications to Asian outflow studies. Georgia Institute of Technology.
Mwaniki, G.R., Rosenkrance, C., Wallace, H.W., Jobson, B.T., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R., VanReken, T.M., 2014. Factors contributing to elevated concentrations of PM 2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Orsini, D.A., Ma, Y., Sullivan, A., Sierau, B., Baumann, K., Weber, R.J., 2003. Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition. Atmospheric Environment 37, 1243-1259.
Ou-Yang, C.-F., Lin, N.-H., Lin, C.-C., Wang, S.-H., Sheu, G.-R., Lee, C.-T., Schnell, R.C., Lang, P.M., Kawasato, T., Wang, J.-L., 2014. Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia. Atmospheric Environment 89, 613-622.
Ou Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Park, S.-S., Cho, S.-Y., Jung, C.-H., Lee, K.-H., 2016. Characteristics of water-soluble inorganic species in PM10 and PM2.5 at two coastal sites during spring in Korea. Atmospheric Pollution Research 7, 370-383.
Pathak, R., Wu, W., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pathak, R.K., Louie, P.K., Chan, C.K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment 38, 2965-2974.
Pathak, R.K., Wang, T., Wu, W.S., 2011. Nighttime enhancement of PM2.5 nitrate in ammonia-poor atmospheric conditions in Beijing and Shanghai: Plausible contributions of heterogeneous hydrolysis of N2O5 and HNO3 partitioning. Atmospheric Environment 45, 1183-1191.
Raizenne, M., Neas, L.M., Damokosh, A.I., Dockery, D.W., Spengler, J.D., Koutrakis, P., Ware, J.H., Speizer, F.E., 1996. Health effects of acid aerosols on North American children: pulmonary function. Environmental health perspectives 104, 506.
Ram, K., Sarin, M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Saleh, R., Hennigan, C., McMeeking, G., Chuang, W., Robinson, E., Coe, H., Donahue, N., Robinson, A., 2013. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmospheric Chemistry and Physics 13, 7683-7693.
Saxena, M., Sharma, A., Sen, A., Saxena, P., Saraswati, Mandal, T.K., Sharma, S.K., Sharma, C., 2017. Water soluble inorganic species of PM10 and PM2.5 at an urban site of Delhi, India: Seasonal variability and sources. Atmospheric Research 184, 112-125.
Seinfeld, J.H., Pandis, S.N., 2016. Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Shahid, I., Kistler, M., Mukhtar, A., Ghauri, B.M., Ramirez-Santa Cruz, C., Bauer, H., Puxbaum, H., 2016. Chemical characterization and mass closure of PM10 and PM2.5 at an urban site in Karachi – Pakistan. Atmospheric Environment 128, 114-123.
Sheu, G.-R., Lin, N.-H., Wang, J.-L., Lee, C.-T., Ou Yang, C.-F., Wang, S.-H., 2010. Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan. Atmospheric Environment 44, 2393-2400.
Shi, G., Xu, J., Peng, X., Xiao, Z., Chen, K., Tian, Y., Guan, X., Feng, Y., Yu, H., Nenes, A., Russell, A.G., 2017. pH of Aerosols in a Polluted Atmosphere: Source Contributions to Highly Acidic Aerosol. Environ Sci Technol 51, 4289-4296.
Simon, S., 2016. Chemical Composition of Fog Water at Four Sites in Taiwan. Aerosol and Air Quality Research 16, 618-631.
Song, C., He, J., Wu, L., Jin, T., Chen, X., Li, R., Ren, P., Zhang, L., Mao, H., 2017. Health burden attributable to ambient PM2.5 in China. Environ Pollut 223, 575-586.
Song, C.H., Park, M.E., Lee, E.J., Lee, J.H., Lee, B.K., Lee, D.S., Kim, J., Han, J.S., Moon, K.J., Kondo, Y., 2009. Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmospheric Environment 43, 2168-2173.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y., McElroy, M.B., 2018. Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics Discussions, 1-26.
Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., Pavoni, B., 2013. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics 13, 1927-1939.
Stein, A., Draxler, R.R., Rolph, G.D., Stunder, B.J., Cohen, M., Ngan, F., 2015. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society 96, 2059-2077.
Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., Ge, X., 2013. The impact of relative humidity on aerosol composition and evolution processes during wintertime in Beijing, China. Atmospheric Environment 77, 927-934.
Takegawa, N., Miyazaki, Y., Kondo, Y., Komazaki, Y., Miyakawa, T., Jimenez, J., Jayne, J., Worsnop, D., Allan, J., Weber, R., 2005. Characterization of an Aerodyne Aerosol Mass Spectrometer (AMS): Intercomparison with other aerosol instruments. Aerosol Science and Technology 39, 760-770.
Tan, H., Cai, M., Fan, Q., Liu, L., Li, F., Chan, P.W., Deng, X., Wu, D., 2017. An analysis of aerosol liquid water content and related impact factors in Pearl River Delta. Sci Total Environ 579, 1822-1830.
Tao, Y., Ye, X., Ma, Z., Xie, Y., Wang, R., Chen, J., Yang, X., Jiang, S., 2016. Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. Atmospheric Environment 145, 1-9.
Thepnuan, D., Chantara, S., Lee, C.T., Lin, N.H., Tsai, Y.I., 2019. Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Sci Total Environ 658, 708-722.
VandenBoer, T., Markovic, M., Sanders, J., Ren, X., Pusede, S., Browne, E., Cohen, R., Zhang, L., Thomas, J., Brune, W.H., 2014. Evidence for a nitrous acid (HONO) reservoir at the ground surface in Bakersfield, CA, during CalNex 2010. Journal of Geophysical Research: Atmospheres 119, 9093-9106.
Von Schneidemesser, E., Monks, P.S., Allan, J.D., Bruhwiler, L., Forster, P., Fowler, D., Lauer, A., Morgan, W.T., Paasonen, P., Righi, M., 2015. Chemistry and the linkages between air quality and climate change. Chem. Rev 115, 3856-3897.
Wang, H., An, J., Cheng, M., Shen, L., Zhu, B., Li, Y., Wang, Y., Duan, Q., Sullivan, A., Xia, L., 2016. One year online measurements of water-soluble ions at the industrially polluted town of Nanjing, China: Sources, seasonal and diurnal variations. Chemosphere 148, 526-536.
Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C.E., Wang, Y., Nenes, A., Zhao, Q., Russell, A.G., 2019. Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Sci Total Environ 646, 564-572.
Wang, J., Christopher, S.A., 2003. Intercomparison between satellite‐derived aerosol optical thickness and PM2. 5 mass: implications for air quality studies. Geophysical research letters 30.
Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., Wang, W., Yang, X., Sui, X., Yao, L., Zhang, Q., 2015. HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Sci Total Environ 538, 93-101.
Wang, R., Tao, S., Wang, W., Liu, J., Shen, H., Shen, G., Wang, B., Liu, X., Li, W., Huang, Y., Zhang, Y., Lu, Y., Chen, H., Chen, Y., Wang, C., Zhu, D., Wang, X., Li, B., Liu, W., Ma, J., 2012. Black carbon emissions in China from 1949 to 2050. Environ Sci Technol 46, 7595-7603.
Weber, R., Orsini, D., Daun, Y., Lee, Y.-N., Klotz, P., Brechtel, F., 2001. A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition. Aerosol Science & Technology 35, 718-727.
Wu, P., Huang, X., Zhang, J., Luo, B., Luo, J., Song, H., Zhang, W., Rao, Z., Feng, Y., Zhang, J., 2019. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis. Environ Sci Pollut Res Int 26, 2649-2661.
Xu, J., Wang, Z., Yu, G., Qin, X., Ren, J., Qin, D., 2014. Characteristics of water soluble ionic species in fine particles from a high altitude site on the northern boundary of Tibetan Plateau: Mixture of mineral dust and anthropogenic aerosol. Atmospheric Research 143, 43-56.
Xue, J., Griffith, S.M., Yu, X., Lau, A.K.H., Yu, J.Z., 2014a. Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site. Atmospheric Environment 99, 24-31.
Xue, J., Lau, A.K., Yu, J.Z., 2011. A study of acidity on PM 2.5 in Hong Kong using online ionic chemical composition measurements. Atmospheric environment 45, 7081-7088.
Xue, J., Yuan, Z., Lau, A.K., Yu, J.Z., 2014b. Insights into factors affecting nitrate in PM2. 5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research: Atmospheres 119, 4888-4902.
Yang, M., Howell, S., Zhuang, J., Huebert, B., 2009. Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics 9, 2035-2050.
Yang, Y., Zhou, R., Yan, Y., Yu, Y., Liu, J., Di, Y., Du, Z., Wu, D., 2016. Seasonal variations and size distributions of water-soluble ions of atmospheric particulate matter at Shigatse, Tibetan Plateau. Chemosphere 145, 560-567.
Yin, L., Niu, Z., Chen, X., Chen, J., Zhang, F., Xu, L., 2014. Characteristics of water-soluble inorganic ions in PM2.5 and PM 2.5-10 in the coastal urban agglomeration along the Western Taiwan Strait Region, China. Environ Sci Pollut Res Int 21, 5141-5156.
Young, L.-H., Li, C.-H., Lin, M.-Y., Hwang, B.-F., Hsu, H.-T., Chen, Y.-C., Jung, C.-R., Chen, K.-C., Cheng, D.-H., Wang, V.-S., Chiang, H.-C., Tsai, P.-J., 2016. Field performance of a semi-continuous monitor for ambient PM 2.5 water-soluble inorganic ions and gases at a suburban site. Atmospheric Environment 144, 376-388.
Yu, J., Yan, C., Liu, Y., Li, X., Zhou, T., Zheng, M., 2018. Potassium: A Tracer for Biomass Burning in Beijing? Aerosol and Air Quality Research 18, 2447-2459.
Zauscher, M.D., Wang, Y., Moore, M.J., Gaston, C.J., Prather, K.A., 2013. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environ Sci Technol 47, 7633-7643.
Zhang, T., Cao, J., Tie, X., Shen, Z., Liu, S., Ding, H., Han, Y., Wang, G., Ho, K., Qiang, J., 2011. Water-soluble ions in atmospheric aerosols measured in Xi′an, China: seasonal variations and sources. Atmospheric Research 102, 110-119.
Zhang, Y., Tang, L., Wang, Z., Yu, H., Sun, Y., Liu, D., Qin, W., Canonaco, F., Prévôt, A., Zhang, H., 2015. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China. Atmospheric Chemistry and Physics 15, 1331-1349.
Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Fang, J., Gu, F., Li, M., Peng, J., Li, J., Zhang, Y., Huang, X., He, L., Wu, Y., Guo, S., 2017a. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics 17, 6853-6864.
Zheng, Y., Che, H., Zhao, T., Zhao, H., Gui, K., Sun, T., An, L., Yu, J., Liu, C., Jiang, Y., 2017b. Aerosol optical properties observation and its relationship to meteorological conditions and emission during the Chinese National Day and Spring Festival holiday in Beijing. Atmospheric Research 197, 188-200.
Zhou, Y., Wang, T., Gao, X., Xue, L., Wang, X., Wang, Z., Gao, J., Zhang, Q., Wang, W., 2010. Continuous observations of water-soluble ions in PM2.5 at Mount Tai (1534 m a.s.l.) in central-eastern China. Journal of Atmospheric Chemistry 64, 107-127.
林家慶,2008。鹿林山空氣品質背景監測之背景值分析, 大氣物理所碩
士論文。國立中央大學
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性, 環境工程研究
所碩士論文。國立中央大學。
林書輝,2013。 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化, 環境工程研究所碩士論文。國立中央大學。
張士昱。2013。乾、濕兩用之氣體吸附裝置。中華民國發明專利第M467055號。
蔡茗宇,2014。 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性,環境工程研究所碩士論文。國立中央大學。
蔡承佑,2016.。 2014年鹿林山氣膠水溶性無機離子短時間動態變化特性, 環境工程研究所碩士論文。國立中央大學。
姜明辰,2016。2015年鹿林山氣膠水溶性無機離子短時間動態變化特性, 環境工程研究所碩士論文。國立中央大學。
張士昱。2016。氣膠收集裝置。中華民國發明專利第M515102號。
陳威任,2018。2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣膠水溶性無機離子短時間動態變化,環境工程研究所碩士論文。國立中央大學。
陳彥銘,2018。2016~2017年東亞背景、生質燃燒傳輸及高山雲霧水氣膠水溶性離子短時間變化,環境工程研究所碩士論文。國立中央大學。
吳俊彥,2019。2018年鹿林山背景及生質燃燒煙團傳輸氣膠特性解析,環境工程研究所碩士論文。國立中央大學。
指導教授 李崇德 審核日期 2020-3-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明