摘要(英) |
Rice is an important and widely edible food crop in Taiwan.Grain supplies in Taiwan consists of approximately 30% self-efficiancy rate. Among it, 90% comes from rice.Therefore, understanding current rice yield is an important issue for the government. By using satellite images, multiple time series and large-scale data can be acquired to observe long-term rice growth. This study used Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired from 2000 to 2018 and rice statistics in Taiwan to establish a rice yield model, comparing the differences between the estimation results and the existing statistics. This research is divided into three steps: (1) Using MODIS images to calculate Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Setting the rice growth period and rice distribution location, collecting statistics on historical rice yield. (2) Using data from 2000 to 2015, including NDVI, LST, and township-based yield data to establish a rice yield model. (3) Calculating NDVI and LST data from 2016 to 2018 in the rice yield model to obtain the rice yield estimation results to find out the difference between the estimation results and existing statistics. The results show that Root Mean Squared Error (RMSE) of first crops from 2016 to 2018 are 792 (2016), 717 (2017), and 1385 (2018) kg/ha. Root Mean Square Percentage Errors (RMSPE) are 11.9% (2016), 10.5% (2017), and 17.3% (2018). RMSE of second crops are 1186 (2016), 930 (2017), 1308 (2018) kg /ha, and RMSPE are 36.0% (2016), 19.7% (2017), 24.5% (2018). To conclude the above findings, first crops perform a relatively better estimation results than the second crops. |
參考文獻 |
〔1〕林訓仕, 蕭巧玲, 耕作方式對南亞地區及臺灣稻麥輪作系統小麥產量及其成本評估, 作物, 環境與生物資訊, 15 (2018) 208-214.
〔2〕汪呈因, 稻作學與米, 初版. 財團法人臺北徐氏基金會, 臺北. 連結, (1974).
〔3〕朱培仁, 稻穀田間產量不同量測方法的試用比較分析, 屏東科技大學生物機電工程系所學位論文, (2013) 1-107.
〔4〕張國楨, 田應平, 施孝謙, 以多時期與 PCA+ NDVI 法改善地物分類之正確性與完整性, 地理研究, (2012).
〔5〕I. Pinheiro Lisboa, J. Melo Damian, M. Roberto Cherubin, P. Silva Barros, P. Ricardo Fiorio, C. Cerri, C. Eduardo Pellegrino Cerri, Prediction of Sugarcane Yield Based on NDVI and Concentration of Leaf-Tissue Nutrients in Fields Managed with Straw Removal, Agronomy, 8 (2018) 196.
〔6〕陳榮坤, 楊純明, 水稻植被反射光譜之特徵及變異, 中華農業氣象:, (2003) 29-38.
〔7〕楊志維, 許明晃, 黃文達, 楊智旭, 蔡養正, 楊棋明, 張新軒, 水稻營養生長期農藝性狀與衛星遙測植生指數 NDVI 之灰關聯分析, 作物, 環境與生物資訊, 1 (2004) 199-206.
〔8〕C.-T. Lin, H.-Y. Tsai, Hierarchical clustering analysis based on grey relation grade, International Journal of Information and Management Sciences 第 16 卷第 1 期, 95-105 (EI: Compendex), (2005).
〔9〕R.-K. Chen, C.-M. Yang, Determining the optimal timing for using LAI and NDVI to predict rice yield, J. Photogramm. Remote Sens, 10 (2005) 239-254.
〔10〕盧英權, 作物學, 國立編譯館1994.
〔11〕H.-S. Lur, C.-L. Hsu, C.-W. Wu, C.-Y. Lee, C.-L. Lao, Y.-C. Wu, S.-J. Chang, C.-Y. Wang, M. Kondo, Changes in temperature, cultivation timing and grain quality of rice in Taiwan in recent years, Crop, Environment & Bioinformatics, 6 (2009) 175-182.
〔12〕T. Nagai, A. Makino, Differences between rice and wheat in temperature responses of photosynthesis and plant growth, Plant and Cell Physiology, 50 (2009) 744-755.
〔13〕姚銘輝, 陳守泓, 氣候變遷下水稻生長及產量之衝擊評估, 作物, 環境與生物資訊, 6 (3):, (2009) 141-156.
〔14〕盧虎生, 水稻之發育過程與健康管理, 水稻健康管理研討會專集:, (2004) 17-32.
〔15〕賴明信, 李長沛, 卓緯玄, 顏信沐, 吳東鴻, 呂椿棠, 張素貞, 良質水稻的健康管理, 彰化: 臺中區農業改良場, 2013, pp. 1-13.
〔16〕萬絢, 鄭育欣, 李哲源, 建立水稻田產量估算的創新方法: 結合蒙地卡羅和物件區塊化的演算法, Journal of Photogrammetry and Remote Sensing, 24 (2019) 183-196.
〔17〕章國威, 申雍, 水稻產量預估之航遙測技術研發, 航空太空及民航學刊. 系列 B, 43 (2011) 55-63.
〔18〕A.K. Prasad, L. Chai, R.P. Singh, M. Kafatos, Crop yield estimation model for Iowa using remote sensing and surface parameters, International Journal of Applied Earth Observation and Geoinformation, 8 (2006) 26-33.
〔19〕T.-p. Le, 使用多時期 MODIS 影像與 ENVISAT ASAR 合成孔徑雷達影像進行越南湄公河三角洲區域之稻米產量估測, National Central University, 2014. |