博碩士論文 107322073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.217.4.206
姓名 吳若瑜(Juo-Yu Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Preprocessing of mobile phone signal data for vehicle mode identification using map-matching technique)
相關論文
★ 圖書館系統通閱移送書籍之車輛途程問題★ 起迄對旅行時間目標下高速公路匝道儀控之研究
★ 結合限制規劃法與螞蟻演算法求解運動排程問題★ 共同邊界資料包絡分析法在運輸業之應用-以國內航線之經營效率為例
★ 雙北市公車乘客知覺服務品質、知覺價值、滿意度、行為意向路線與乘客之跨層次中介效果與調節式中介效果★ Investigating the influential factors of public bicycle system and cyclist heterogeneity
★ A Mixed Integer Programming Formulation for the Three-Dimensional Unit Load Device Packing Problem★ 高速公路旅行時間預測之研究--函數資料分析之應用
★ Behavior Intention and its Influential Factors for Motorcycle Express Service★ Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
★ 混合羅吉特模型於運具選擇之應用-以中央大學到桃園高鐵站為例★ 含額外限制式動態用路人均衡模型之研究
★ 動態起迄旅次矩陣推估模型之研究★ 動態號誌時制控制模型求解演算法之研究
★ 不同決策變數下動態用路人均衡路徑選擇模型之研究★ 動態人口分布最佳化控制之研究-雙層規劃模型之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 行動手機資料已被廣泛運用在旅運行為的範疇中,其中尤以運輸規劃四步驟:旅次產生、旅次分佈、運具判別、交通量指派最為常見。相較於旅運需求預測其他三種步驟,運具判別的議題現有文獻較少探討,故本研究特別針對運具判別進行探討。目前行動電話資料的點位產生方式係由行動電話主動傳遞訊號至基地台,並利用三角運算推估經緯度而得,但受限於現有的技術常存在兩個缺點:(1)時間與空間上的不確定性; (2)飄移現象。其中又可細分出飄移點、回跳點、資料點未位於道路路網上等問題,本研究將針對此三種偏差進行修正,其中本研究提出了一種新穎的方式以解決回跳點問題;而資料點匹配至道路之處理,則利用隱馬可夫模型進行圖形比對。為此,本研究採用兩種監督式分類方法(支持向量機與深度神經網路),探討在四種運具特性情境(依據旅行時間、起迄對的開始時間、起迄對間的旅行速度、最大速度以及平均速度等五種特性組合而成)、四種資料集組合(兩對不同方向之起迄資料、以及根據東經121.206切割出兩種不同都市化程度之區域)、三種訓練驗證資料之比例、和資料是否進行圖形比對,進行系統性的測試,比較運具判別(公共汽車或是汽車)準確率上的表現。
研究結果顯示,SVM方法在(1)包含五個運具特性的情境;(2)從中央大學出發之起迄對;(3)60/40比例之訓練驗證資料;(4) 有或無考慮圖形比對,所進行的訓練結果,在運具判斷的表現上較其他組合優異,其準確率皆高達99.89%。但使用五個運具特性組合(情境一)的進行訓練存在實務上的限制:必須同時記錄實際的蒐集情形以獲得該起迄對的旅行時間。在資源有限且不特別萃取特定方向的前提下並不容易做到,因此可以採用不考慮旅行時間(情境三)的方式進行訓練,其訓練之準確率分別為80.38%(有圖形比對)、81.36%(無圖形比對)。前者加入圖形比對之效果雖稍低於後者,還是具備可以接受的準確率。行動電話資料經過圖形比對後會提升資料的正確性,但也同時造成運具間的速度特性相似度變低(因部分中速之距離經圖形比對後拉長了,兩運具的平均速度與速度之眾數皆分散至不同速度區間而導致兩者相差度降低,參見表5與圖20),而增加特徵萃取難度。但此現象隨電信通訊技術的進步,可以預期利用行動電話作為運具判別之資料其正確性與資料點分佈密集程度將能有所提升,從而增加判別之準確性。
摘要(英) Mobile phone data have been extensively explored for travelers’ behavior in the area of transportation planning, especially for extracting input data to trip generation, O-D estimation, mode choice and traffic assignment. In this research, we particularly address the inference of transportation modes using mobile phone data, because, as compared with the other three steps in the traditional travel demand forecasting procedure, research on extracting input data for mode choice using mobile phone data is relatively inadequate and thus the research gap need to be fulfilled. The obstacle that prevents the usage of mobile phone data from inferring the transportation mode is mainly due the two types of drawbacks, temporal and spatial uncertainties, and oscillation phenomenon. As a result, inaccurate locations of data points such as missing data, drifting data points, jump-back data points, and off-road data points appear and hence prevent the mobile phone data from being practically used. Among all the undesired phenomenon, this research will stress on the problem of jump-back and off-road data points, along with other influential factors such as level of urbanization (divided by an artificial separating line) which makes the layout and density of cell towers as well as traffic flow pattern totally different. A novel method was proposed to deal with jump-back data points whereas a map-matching method using hidden Markov model was adopted to treat off-road data points. For comparison purpose we also adopt two classification methods, i.e., support vector machine and deep neural network, to investigate how (1) the four scenarios formed based on the five modal features (including travel time, starting time of trace, traversal speed between traces, maximum speed, and average speed), (2) four combinations formed by the two directional O-D pairs and two subareas separated by longitude 121.206, (3) three proportion settings of training/testing data, and (4) map-matching techniques (with or without) would affect the accuracy rates associated with two training methods, i.e., SVM and DNN methods, in inferring transportation modes (i.e., either bus or vehicle).
The results show that the refined mobile phone data with (1) the first scenario consisting of five modal features, (2) the directional O-D data beginning from National Central University, (3) the proportion setting of (60, 40), (4) SVM, and (5) whether or not considering map-matching, resulted in the best performance with accuracy index of 99.89%. However, the feature ‘‘travel time’’ in the first scenario can only be collected by the investigator in the field survey. Therefore, the approach takes instead the third scenario (without considering travel time) for later analysis and can still achieve accuracy rate of, respectively, 80.38% for incorporating map-matching treatment, and 81.36% for without incorporating map-matching treatment. The performance of the former is a little inferior to the latter, however, it is still acceptable because the quality of the refined data points is still not justified which may affect the performance of later analysis. Theoretically the refined data after map-matching would improve the accuracy of data location, however, the speed distributions between the two types of transportation modes will thus become more similar, due to part of shorter distance paths corresponding to the statistical mode of speed distribution before map-matching were projected onto longer ones. Consequently, the extraction of useful modal features for inferring transportation modes becomes more difficult. Nevertheless, with the expected advances in mobile phone technology, the accuracy of locations obtained from and the frequencies associated with mobile phone data will improve and can of course get better performance in terms of accuracy rates.
關鍵字(中) ★ 行動電話資料
★ 回跳點現象
★ 圖形比對
★ 運具判斷
★ 支持向量機
★ 深度學習
關鍵字(英) ★ mobile phone data
★ jump-back phenomenon
★ map-matching
★ mode inference
★ vector support machine
★ deep learning
論文目次 摘要......................i
Abstract......................ii
誌謝......................iv
List of Figures......................vii
List of Tables......................ix
1. Introduction......................1
2. Literature review......................4
2.1 Map-matching methods......................4
2.2 Application of mobile phone data in transportation planning......................7
2.3 Classification methods for inferring transportation mode......................9
3. Methodology......................13
3.1 Map-matching......................13
3.1.1. Emission probability......................15
3.1.2. Transition probability......................17
3.1.3. Viterbi algorithm......................19
3.2 Support Vector Machine (SVM)......................20
3.3 Deep learning......................27
3.3.1. Deep neural network (DNN) structure...............28
3.3.2 Activation function......................30
3.3.3. Loss function......................32
4. Experimental Design and Preprocessing................34
4.1 Field data collection......................34
4.1.1 Experimental design......................34
4.2 Data preprocessing......................37
4.2.1. Oscillation phenomenon and elimination.....39
4.2.2. Jump-back phenomenon and elimination.......40
4.2.3. Map-matching......................45
5. Result analysis......................51
5.1 Scenario design......................51
5.2 Performance of four scenarios with respect to SVM and DNN 53
5.2.1. Performance with respect to four scenarios of modal features, before and after map-matching using all available data......................53
5.2.2. Performance of four scenarios, before and after map-matching with two directional origin-destination pairs...56
5.2.3. Performance of four scenarios, before and after map-matching with two types of land use......................58
5.3 Critical modal features of mobile phone data in inferring transportation modes......................59
5.4 Confusion matrices and relevant Type I and II errors...................... 62
6. Conclusion and suggestions......................65
6.1 Conclusion......................65
6.2 Suggestions......................67
References......................71
Appendix A Performance w.r.t two classification methods..75
Appendix B Confusion matrices w.r.t SVM...............77
Appendix C Confusion matrices w.r.t DNN...............88
參考文獻 [1] Alexander, L., Jiang, S., Murga, M., & González, M. C., 2015. Origin–destination trips by purpose and time of day inferred from mobile phone data. Transportation Research Part C: Emerging Technologies, 58, 240-250.
[2] Chen, C., Bian, L., & Ma, J., 2014 From traces to trajectories: How well can we guess activity locations from mobile phone traces?. Transportation Research Part C: Emerging Technologies, 46, 326-337.
[3] Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M., 2016. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transportation Research Part C: Emerging Technologies, 68, 285-299.
[4] Cohen, J., 1988. Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: L. Erlbaum Associates.
[5] Cortes, C., & Vapnik, V., 1995. Support-vector networks. Machine Learning, 20(3), 273-297.
[6] Dupond, S., 2019. A thorough review on the current advance of neural network structures. Annual Reviews in Control, 14, 200-230.
[7] Fang, S. H., Fei, Y. X., Xu, Z., & Tsao, Y., 2017. Learning transportation modes from smartphone sensors based on deep neural network. IEEE Sensors Journal, 17(18), 6111- 6118.
[8] Gong, Y., Zhao, F., Chen, S., & Luo, H., 2017. A convolutional neural networks based transportation mode identification algorithm. 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1-7.
[9] Holleczek, T., Yu, L., Lee, J. K., Senn, O., Ratti, C., & Jaillet, P., 2014. Detecting weak public transport connections from cellphone and public transport data. In Proceedings of the 2014 International Conference on Big Data Science and Computing, No. 9. ACM.
[10] Hsueh, Y. L., Chen, H. C., & Huang, W. J., 2017. A Hidden Markov Model-Based Map-Matching Approach for Low-Sampling-Rate GPS Trajectories. In 2017 IEEE 7th International Symposium on Cloud and Service Computing (SC2), 271-274.
[11] Hinton, G. E., & Salakhutdinov, R. R., 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
[12] Ho, H. C., 2020. Inferring transportation modes (bus or vehicle) from mobile phone data using support vector machine and deep neural network.
[13] Iqbal, M. S., Choudhury, C. F., Wang, P., & González, M. C., 2014. Development of origin–destination matrices using mobile phone call data. Transportation Research Part C: Emerging Technologies, 40, 63-74.
[14] Jahangiri, A., & Rakha, H., 2014. Developing a support vector machine (SVM) classifier for transportation mode identification by using mobile phone sensor data. In Transportation Research Board 93rd Annual Meeting (No. 14-1442).
[15] Jagadeesh, G. R., & Srikanthan, T., 2017. Online map-matching of noisy and sparse location data with hidden Markov and route choice models. IEEE Transactions on Intelligent Transportation Systems, 18(9), 2423-2434.
[16] Krizhevsky, A., Sutskever, I., & Hinton, G. E., 2012. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, 1097-1105.
[17] Lipsy, M. W., & Hurley, S. M., 1998. Design sensitivity: statistical power for applied experimental research. Handbook of Applied Social Research Methods. Thousand Oaks, CA: Sage Publications, 39-68.
[18] Liang, X., & Wang, G., 2017. A convolutional neural network for transportation mode detection based on smartphone platform. In 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS), 338-342.
[19] Lu, Z., Long, Z., Xia, J., & An, C., 2019. A Random Forest Model for Travel Mode Identification Based on Mobile Phone Signaling Data. Sustainability, 11(21), 5950.
[20] Moore, D. S., Notz, W. I, & Flinger, M. A., 2013. The Basic Practice of Statistics (6th ed.). New York, NY: W. H. Freeman and Company.
[21] M. Tran, Cost Effective Location Detection Techniques Used by the 911 Help SMS App to Overcome Smartphone Flaws and GPS Discrepancies (2015). [Online].
[22] Newson, P., & Krumm, J., 2009. Hidden Markov map matching through noise and sparseness. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 336-343.
[23] Quddus, M. A., Ochieng, W. Y., Zhao, L., & Noland, R. B., 2003. A general map matching algorithm for transport telematics applications. GPS Solutions, 7(3), 157-167.
[24] Quddus, M. A., Noland, R. B., & Ochieng, W. Y., 2006. A high accuracy fuzzy logic based map matching algorithm for road transport. Journal of Intelligent Transportation Systems, 10(3), 103-115.
[25] Qi, H., Di, X., & Li, J. (2019). Map-matching algorithm based on the junction decision domain and the hidden Markov model. PloS one, 14(5), e0216476.
[26] Su, X., Caceres, H., Tong, H., & He, Q., 2016. Online travel mode identification using smartphones with battery saving considerations. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2921-2934.
[27] Sisodia, D. S., Pachori, R. B., & Garg, L., 2020. Handbook of Research on Advancement of Artificial Intelligence in Healthcare Engineering. Hershey, PA: IGI Global, Medical Information Science Reference.
[28] Tettamanti, T., Demeter, H., & Varga, I., 2012. Route choice estimation based on cellular signaling data. Acta Polytechnica Hungarica, 9(4), 207-220.
[29] Van Lint, J. W. C., Hoogendoorn, S. P., & Van Zuylen, H. J., 2002. Freeway travel time prediction with state-space neural networks: modeling state-space dynamics with recurrent neural networks. Transportation Research Record, 1811(1), 30-39.
[30] Valueva, M. V., Nagornov, N. N., Lyakhov, P. A., Valuev, G. V., & Chervyakov, N. I. (2020). Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Mathematics and Computers in Simulation.
[31] Wang, F., & Chen, C. (2018). On data processing required to derive mobility patterns from passively-generated mobile phone data. Transportation Research Part C: Emerging Technologies, 87, 58-74.
[32] Xu, D., Song, G., Gao, P., Cao, R., Nie, X., & Xie, K., 2011. Transportation modes identification from mobile phone data using probabilistic models. In International Conference on Advanced Data Mining and Applications, 359-371.
[33] Zheng, Y., Liu, L., Wang, L., & Xie, X., 2008. Learning transportation mode from raw GPS data for geographic applications on the web. In Proceedings of the 17th International Conference on World Wide Web, 247-256.
指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明