以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:28 、訪客IP:3.139.105.18
姓名 洪世峰(Shih-Fong Hong) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱 SD690鋼筋之混凝土梁高週次疲勞實驗 相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2025-8-1以後開放) 摘要(中) 本研究主要目的是探討高拉力鋼筋(SD690)混凝土梁(New RC梁)構件受疲勞荷載作用下,對於橋梁等需承受高週次疲勞之行為,探討New RC梁與一般RC梁疲勞行為是否有差異。
故本研究主要以鋼筋混凝土梁進行單向覆載之疲勞實驗,探討SD690鋼筋於不同應力差幅(fr)之反覆載重作用下,所對應之疲勞壽命。並於各疲勞週次,記錄梁中點撓度、混凝土應變及裂縫變化,探討New RC梁受覆載時在梁勁度變化情形。
統計至目前New RC梁疲勞試驗結果[30, 31],發現SD690高拉力鋼筋之疲勞特性與Helgason等人[5]所提出之一般鋼筋疲勞壽命經驗公式之計算結果相近。另外,對於鋼筋竹節尺寸(r/h)的研究結果顯示,r/h值越大鋼筋之疲勞壽命亦越大。而SD690鋼筋在發生疲勞破壞後,其疲勞裂紋面積所佔比例相對較小,不同於SD420W鋼筋之疲勞特性。實驗結果顯示,配置壓力鋼筋之RC梁可以有效抑制混凝土潛變應變的增長及斷面勁度之衰減。摘要(英) The main purpose of this research is to investigate the fatigue behavior of high-strength steel (SD690) concrete beams (New RC beams) subjected to fatigue loads and find the difference of the fatigue behavior between New RC beams and general RC beams.
The fatigue loading test is performed to observe the fatigue behavior of RC beams with SD690 steel reinforcement. In the test, the mid-span deflection, concrete strain, the maximum width of the concrete crack, and the compressive strain of top sectional concrete are measured for studying the fatigue characteristics of the New RC beams.
The statistics on the current fatigue test results of New RC beams [30, 31] has shown that the fatigue characteristics of SD690 high tensile steel bars is similar to the calculation results of the general fatigue life empirical formula proposed by Helgason et al. [5]. In addition, the results for the steel bars of the ratio of the radius of the lug curve (r) to the height of the lug(r/h) showed that the greater the r/h value had, the greater the fatigue life of the steel obtained. The fatigue crack area of the SD690 steel bar is relatively small after fatigue failure, which is different from the fatigue characteristics of the SD420W steel bar. Experimental results also show that RC beams with compression steel bars can effectively restrain the growth of concrete creep strain and the degradation of the sectional stiffness.關鍵字(中) ★ New RC
★ 高週次疲勞
★ 疲勞極限
★ 混凝土潛變
★ 斷面勁度關鍵字(英) ★ New RC
★ high-cycle fatigue
★ fatigue limit
★ creep of concrete
★ sectional stiffness論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 viii
圖目錄 ix
符號說明 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的及方法 1
第二章 文獻回顧 3
2.1 公路橋梁設計規範 3
2.2 有關鋼筋疲勞研究 6
2.2.1 Collins[7]對於鋼筋的疲勞特性之看法 6
2.2.2 Helgason等人[5] 與MacGregor等人[8]的鋼筋疲勞研究 6
2.2.2.1 應力差幅(f_r) 8
2.2.2.2 最小應力(f_(s,min)) 8
2.2.2.3 鋼筋的等級強度(f_y) 8
2.2.2.4 鋼筋的直徑(d_b) 10
2.2.2.5 鋼筋表面的形狀 10
2.2.3 Jhamb 和MacGregor [9]的鋼筋應力集中影響研究 11
2.2.3.1 K_T的實驗研究 12
2.3 高強度混凝土特性及性能之相關研究[10] 13
2.3.1 高強度混凝土的材料特性 13
2.3.2 高強度混凝土的工程特性 14
2.4 混凝土疲勞之相關研究 14
2.5 混凝土潛變之相關研究 15
2.6 高強度混凝土潛變之相關研究 17
2.7 混凝土彈性模數E_c 20
2.8 有關鋼筋混凝土結構疲勞之研究 22
2.9 高強度鋼筋混凝土結構設計手冊[1] 22
2.9.1 混凝土的等效矩形應力塊 22
2.9.2 T頭主筋之伸展長度 23
2.10 小結 23
第三章 試體規劃與實驗步驟 25
3.1 試體規劃 25
3.2 材料試驗 25
3.2.1 鋼筋拉伸試驗 26
3.2.2 混凝土抗壓試驗 27
3.2.3 鋼筋彎曲試驗 27
3.2.4 量測鋼筋竹節尺寸r/h 28
3.3 試體設計 29
3.4 試體製作 30
3.4.1 黏貼鋼筋應變計 30
3.4.2 鋼筋籠製作 31
3.4.3 應變計整線 33
3.4.4 模板製作 33
3.4.5 模版內預埋母螺栓 33
3.4.6 模板組立 34
3.4.7 試體澆鑄 35
3.4.8 試體拆模與養護 35
3.4.9 試體架設 35
3.5 實驗設備 36
3.5.1 加載系統 36
3.5.1.1 油壓機設備改裝 36
3.5.1.2 程式架構 37
3.5.1.3 雙向千斤頂 37
3.5.1.4 比例電磁閥 37
3.5.2 量測系統 38
3.5.2.1 荷重計 38
3.5.2.2 位移計 38
3.5.2.3 應變計 38
3.5.2.4 手持式電子側微計 38
3.6 實驗方法 39
3.7 實驗數據處理 40
3.7.1 反覆荷重歷時 40
3.7.2 混凝土表面應變 40
3.7.3 裂縫 41
第四章 實驗結果 42
4.1 靜載重試驗 42
4.2 疲勞載重試驗 42
4.2.1 試體HFL-1 43
4.2.2 試體HFL-2 46
4.2.3 試體HFL-3 49
4.2.4 試體HFL-3於300萬週次後單壓試驗結果 51
4.3 SD690鋼筋之S-N曲線敏感度分析 52
4.3.1 應力差幅(f_r)之影響 52
4.3.2 鋼筋最小應力(f_(s,min))之影響 53
4.3.3 鋼筋竹節形狀(r/h)之影響 53
4.4 鋼筋之理論疲勞極限應力之研究 55
4.5 SD690高拉力鋼筋的疲勞特性 56
4.5.1 斷裂位置與面積 56
4.5.2 鋼筋直徑影響 57
4.6 混凝土的潛變特性 58
4.6.1 試體梁受壓側有無壓力筋之影響 58
4.6.2 接近1百萬次之試體梁鋼筋受相似循環週期後斷面勁度之比較 59
第五章 結論與建議 62
5.1 結論 62
5.2 建議 64
參考文獻 65
附錄A 不同量測方法之鋼筋r/h值 151
附錄B 試體標稱強度計算 155
附錄C 試體降伏載重計算 159
附錄D 以Response-2000作斷面分析 161
附錄E P_max之實驗誤差範圍 164參考文獻 [1] 中華民國結構工程學會、中華民國地震工程學會、國家地震工程研究中心,高強度鋼筋混凝土結構設計手冊,初版,中華民國結構工程學會,臺北市,2017年12月。
[2] ACI Committee 318, Building Code Requirements for Structural Concrete and Commentary Building Code Requirements for Structural Concrete, ACI 318-19, American Concrete Institute, 2019.
[3] ACI Committee 215, Considerations for Design of Concrete Structures Subjected to Fatigue Loading, ACI 215R-74, American Concrete Institute, 1997.
[4] J. Moehle, Seismic Design of Reinforced Concrete Buildings, McGraw-Hill Education, United States of America, 2015.
[5] T. Helgason, J. M. Hanson, N. F. Somes, W. G. Corley, and E. Hongnestad, Fatigue Strength of High Yield Reinforcing Bars, National Cooperative Highway Research Program (NCHRP) Report 164, Transportation Research Board, National Research Council, Washington, D.C., 1976.
[6] 交通技術標準規範公路類公路工程部,公路橋梁設計規範,初版,交通部,臺北市,2009年12月。
[7] M. P. Collins, and D. Mitchell, Prestressed Concrete Structures, Prentice-Hall, New Jersey, 1991.
[8] J. G. MacGregor, I. C. Jhamb, and N. Nuttall, “Fatigue Strength of Hot Rolled Deformed Reinforcing Bars”, ACI Structural Journal, Vol. 68, No. 3, pp. 169-179, March 1971.
[9] J. G. MacGregor, and I. C. Jhamb, “Stress Concentrations Caused by Reinforcing Bar Deformations,” ACI Structural Journal, Vol. 41, pp. 169-182, January 1974.
[10] A. H. Nilson, Properties and Performance of High-Strength Concrete, IABSE Reports, Vol. 55, pp. 389-394, 1987.
[11] A. M. Neville, Properties of Concrete, 4th ed., John Wiley & Sons, Inc., New York, 1996.
[12] Z.P. Bazant, and S. Baweja, “Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures – Model B3, RILEM Recommendation,” Materials and Structures, v. 28, pp. 357-365, 1995.
[13] B. D. Townsend, supervisor: R. E. Weyers, Creep and Shrinkage of a High Strength Concrete Mixture, Master of science thesis in Civil Engineering, Virginia Tech, May 2003.
[14] ACI Committee 209, “Prediction of creep, shrinkage and temperature effects in concrete structures.” Manual of Concrete Practice, Part 1, 209R 1-92, 1990.
[15] X. S. Huo, N. Al-Omaishi, and M.K. Tadros, “Creep , Shrinkage, Modulus of Elasticity of High Performance Concrete.”, ACI Materials Journal, v. 98, n.6, November-December 2001.
[16] CEB-FIP Model Code, “Evaluation of the Time Dependent Behavior of Concrete,” September 1990.
[17] American Association of State Highway and Transportation Officials, AASHTO-LRFD Bridge Design Specifications, Second Edition, Washington, DC, 1998.
[18] N. J. Gardner, and M. J. Lockman, “Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete,” ACI Materials Journal, v. 98, pp. 159-167, March- April 2001.
[19] Tadros, et al. “Prestress Losses in Pretensioned High-Strength Concrete Bridge Girders,” Final Report, 2002.
[20] A. Mokhtarzadeh, and C. French, “Time-dependent properties of high-strength concrete with consideration for precast applications.” ACI Materials Journal, v. 97, n. 3, pp. 263-271, March- June 2000.
[21] A.S. Ngab, F.O. Slate, and A.H. Nilson, “Microcracking and Time-DependentStrains in High Strength Concrete”. ACI Journal, July- August 1981.
[22] M. M. Smadi, F. O. Slate, and A. H. Nilson, “Shrinkage and creep of high, medium, and low strength concretes, including overloads.” ACI Materials Journal, v. 84, n. 3, pp. 224-234, May- June 1987.
[23] 中國土木水利工程學會混凝土工程委員會,「鋼筋混凝土學 (土木406-100)」,科技圖書,臺北市,2011年。
[24] 廖文正,林致淳,詹穎雯,「台灣混凝土彈性模數建議公式研究」,結構工程期刊,第31卷,第3期,pp. 5-31,2016年。
[25] T. S. Chang, and C. E. Kesler, “Fatigue Behavior of Reinforced Concrete,” ACI Structural Journal, Vol. 55, No. 2, pp. 245-254, August 1958.
[26] 彭耀南、江文卿,「鋼筋混凝土樑之疲勞行為」,中國土木水利工程學刊,第一卷第二期,147~152頁,1989年3月。
[27] 經濟部標準檢驗局,「CNS 560 A2006 鋼筋混凝土用鋼筋」,土木材料及品質管理相關國家標準(CNS規範),2008年9月。
[28] 安鵬科技有限公司,DinoCapture 2.0軟體,新竹市,2000年。
[29] C. Bentz, and M. P. Collins, Programs of Response-2000, University of Toronto, V. 1.0.5, August 2000.
[30] 王勇智,鍾偉倫,葉子鉦,「鋼筋混凝土梁疲勞行為之初步研究」,第14屆結構工程研討會暨第4屆地震工程研討會,台中市,2018年11月。
[31] 王勇智,葉子鉦,洪世峰,「鋼筋混凝土梁疲勞損傷之研究」,台灣混凝土學會2019年會暨混凝土工程研討會,台北市,2019年11月。指導教授 王勇智 審核日期 2020-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare