博碩士論文 107621015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.118.137.243
姓名 蘇瑋(Wei Su)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱
(Changes of Tropical Tropopause in Response to Global Warming)
相關論文
★ 熱帶太平洋對流垂直結構之觀測與模擬特徵★ 熱帶對流的水氣與能量輸送: 深-淺對流模之比較
★ 超級MJO事件之濕靜能收支分析★ 全球暖化下季風亞洲降水的變化
★ 使用HiRAM 模擬全球暖化下熱帶降水及對流的變化★ MJO對南海颱風活動之影響
★ 熱帶對流層氣溫之主要擾動有多接近對流準平衡?★ Changes of the Hadley Cell During the Last Four Decades
★ Impacts of Global Warming on a Super Madden Julian Oscillation Event in the WRF Simulation★ 蘇門答臘島北部地區夏季年際間降水變化之機制探討
★ 最後一次冰消期的南大洋動力學和上升流 :模擬研究★ Potential Changes of Surface Latent Heat Flux over Oceans under Global Warming
★ Distinct Propagating Behaviors of Madden-Julian Oscillation over Indian Ocean and Maritime Continent★ MSE Budget Analysis of Strong and Weak MJO Events Using ERA5 and COSMIC RO Data: A Case-to-Case Comparison Study
★ The role of shallow convection in tropical circulation: a simple analytic approach★ Madden-Julian Oscillation的大氣雲–輻射效應在全球暖化下的變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此篇論文使用ERA-Interim再分析資料,以及CMIP5模式情境模擬資料,來研究熱帶對流層頂在全球暖化下的變化。其中包含三種對流層頂定義方式,分別為使用溫度遞減率的熱力法、以位渦定義的動力法,以及與臭氧濃度相關的化學法。由長期氣候態中可發現,緯向平均後的對流層頂在使用熱力法下,與前人的研究結果一致,動力對流層頂在中緯度地區表現不錯,但是無法適用於赤道低緯地區,而化學法在與前兩種方法相比下稍嫌不足。因此,在後續的研究當中,會使用熱力法來作為定義對流層頂的方式,且集中在熱帶地區。
季節變異方面,再分析資料的結果顯示,北半球冬季對流層頂高度在40年平均下比夏季高約500m,氣壓則是低約10hPa。本篇研究中使用CMIP5 rcp8.5暖化情境模式資料來模擬對流層頂在全球暖化下的變化,與前人研究結果相符,對流層頂高度增加伴隨著對流層頂氣壓降低,氣壓下降率為約1.43hPa/decade,高度上升率則為128.57m/decade。後根據全球SST(海表面溫度)的EOF(經驗正交函數)分析,以及對其進行對流層頂氣壓的迴歸分析,結果顯示聖嬰-南方振盪現象(ENSO)與全球暖化(Global Warming)兩者皆會影響對流層頂,使其產生變化。
摘要(英) Changes of the tropical tropopause under global warming is studied using the ERA-Interim reanalysis datasets and the CMIP5 model simulation outputs. Three methods of the tropopause definition are used, including the thermal, dynamical, and chemical ones. The long-term climatology shows that the tropopause is well defined in the tropics using the thermal method, the dynamical method is proper in the mid-latitudes but failed in the deep tropics, and the chemical method has some deficiencies compared to the other two. This study thus focuses on the tropical regions and chooses the thermal method to do the following researches.
  For the global-mean seasonal variations, Northern winter tropopause height (pressure) is about 500m (10hPa) averaged higher (lower) than the summer one in the 40 years. Coincide with previous studies, the tropopause pressure tends to decrease when the tropopause height increases in the CMIP5 rcp8.5 scenarios, with a decreasing rate of about 1.43hPa/decade, and an increasing rate of nearly 128.57m/decade. According to the empirical orthogonal function (EOF) analysis of the SST fields, and the regression maps of the tropopause pressure onto the SST modes, El Niño-Southern Oscillation (ENSO) and Global Warming both may have impacts on the variability of the tropopause.
關鍵字(中) ★ 對流層
★ 全球暖化
關鍵字(英)
論文目次 摘要 v
Abstract vi
Acknowledgements vii
Table of Contents viii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Data and Methodology 3
2.1 Datasets 3
2.2 Tropopause Definitions 3
2.2.1 Thermal Tropopause 4
2.2.2 Dynamic Tropopause 5
2.2.3 Chemical Tropopause 6
Chapter 3 Results 8
3.1 Annual-mean Climatology 8
3.2 Seasonal Variation 9
3.3 Large Scale effects on the Tropopause 10
Figure 1 12
Chapter 4 Tropopause Change under Global Warming 16
4.1 Global Warming Impact on the Tropopause 16
4.2 CMIP5 Historical vs. rcp8.5 First and Last 25 Years 16
4.3 CMIP5 rcp8.5 first 25 years vs last 25 years 17
Chapter 5 Summary and Conclusion 20
Appendix I: Spatial Climatology of Tropopause 22
Appendix II: Model Discrepancies and Acquisition Rate 24
References 28
參考文獻 Bethan, S., G. Vaughan, and S. J. Reid, 1996: A comparison of ozone and thermal
tropopause heights and the impact of tropopause definition on quantifying the ozone content of the troposphere. Quart. J. Roy. Meteor., 122, 929–944.
Danielsen, E. F., 1964: Project Springfield. DASA Report 1517, Defense Atomic Support Agency, Washington, DC 20301.
Danielsen, E. F., 1968: Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity. J. Atmos. Sci., 25(3), 502–518.
Duncan, G. J., C. J. Dowsett, A. Claessens, K. Magnuson, A. C. Huston, P. Klebanov, et al., 2007: School readiness and later achievement. Dev. Psychol., 43, 1428.
Gettelman, A., W. J. Randel, S. Massie, F. Wu, W. G. Read, and J. M. Russell III, 2001:
El Nin˜o as a natural experiment for studying the tropical tropopause region.
J. Climate, 14, 3375–3392.
Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.
Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause, Q. J. R. Meteorol. Soc., 124(549), 1579–1604.
Highwood, E. J., B. J. Hoskins, P. Berrisford, 2000: Properties of the Arctic tropopause. Q. J. R. Meteorol. Soc. 126: 1515–1532.
Hoerling, M. P., T. D. Schaack, and A. J. Lenzen, 1991: Global objective tropopause analysis. Mon. Wea. Rev., 119, 1816–1831.
Hoinka, K. P., 1998: Statistics of the global tropopause pressure. Mon. Weather Rev.,
126, 3303–3325.
Hoinka, K. P., 1999: Temperature, humidity, and wind at the global tropopause. Mon. Weather Rev. 127, 2248–2265.
Holton, J. R., P. H. Haynes, M. E. Mclntyre, A. R. Douglass, R. B. Rood, and L.
Pfister, 1995: Stratosphere-troposphere exchange. Rev. Geophys., 33, 403–439.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc., 111, 877–946.
Juckes, M. N., 1994: Quasigeostrophic dynamics of the tropopause. J. Atmos. Sci., 51, 2756–2768.
Kunz T. H., E. Braun de Torrez, D. Bauer, T. Lobova, and T. H. Fleming, 2011: Ecosystem services provided by bats. Ann. N.Y. Acad. Sci., 1223, 1–38.
Lorenz, D. J., and E. T. DeWeaver, 2007: Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J. Geophys. Res., 112, D10119.
Lin, Pu, et al., 2017: Changes of the Tropical Tropopause Layer under Global Warming. J. Climate, 30, 4, 1245–1258.
Randel, W. J., F. Wu, and D. J. Gaffen, 2000: Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalyses. J. Geophys. Res, 105, 15509–15523.
Reichler, T., M. Dameris, and R. Sausen, 2003: Determining the tropopause height from gridded data. Geophysical Research Letters, 30(20), 2042.
Reid, G. C., and K. S. Gage, 1996: The tropical tropopause over the western Pacific: Wave driving, convection, and the annual cycle, J. Geophys. Res., 101, 21,233–21,241.
Santer, B. D., et al., 2003: Behavior of tropopause height and atmospheric temperature in models, reanalyses, and observations: Decadal changes. J. Geophys. Res., 108(D1), 4002.
Santer, B. D., et al., 2004: Identification of anthropogenic climate change using a
second-generation reanalysis. J. Geophys. Res., 109, D21104.

Seidel, D. J., R. J. Ross, J. K. Angell, and G. C. Reid, 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 7857–7878.
Seidel, D. J., and W. J. Randel, 2006: Variability and trends in the global tropopause estimated from radiosonde data. J. Geophys. Res., 111, D21101.
Shapiro, M. A., 1978: Further Evidence of the Mesoscale and Turbulent Structure of Upper Level Jet Stream–Frontal Zone Systems. Mon. Wea. Rev., 106, 1100–1111.
Shapiro, M. A., 1980: Turbulent Mixing within Tropopause Folds as a Mechanism for the Exchange of Chemical Constituents between the Stratosphere and Troposphere. J. Atmos. Sci., 37, 994–1004.
Shepherd, T. G., 2002: Issues in stratosphere‐troposphere coupling, J. Meteorol. Soc. Jpn., 80, 769– 792.
Wang, J., S. Pawson, B. Tian, M.-C. Liang, R.-L. Shia, Y.-L. Yung, and X. Jiang, 2011: El Niño–Southern Oscillation in Tropical and Midlatitude Column Ozone. J. Atmos. Sci., 68, 1911–1921.
Wilcox, L. J., B. J. Hoskins, K. P. Shine, 2012: A global blended tropopause based on ERA data. Part I: Climatology. Q. J. R. Meteorol. Soc. 138: 561–575.
Wilcox, L. J., B. J. Hoskins, K. P. Shine, 2012: A global blended tropopause based on ERA data. Part II: Trends and tropical broadening. Q. J. R. Meteorol. Soc. 138: 576–584.
WMO, 1957: Meteorology-A three-dimensional science: Second session of the commission for aerology, WMO Bull., 4, 134–138.
Zängl, G., and K. P. Hoinka, 2001: The tropopause in the polar regions. J. Climate,
14: 3117–3139.
指導教授 余嘉裕 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明