博碩士論文 107621001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:122 、訪客IP:18.191.135.224
姓名 童子恩(Tzu-En Tung)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 短波輻射之地形效應參數化對弱綜觀條件局部環流與對流模擬的影響
(Topographic effect on surface solar radiation parameterization simulate local circulation and convection under weak synoptic condition)
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在不同太陽的位置以及多樣的地貌特徵下,太陽的短波輻射和地形的交互作用會對不同區域地表產生不同的加熱作用,影響地表溫度分布進而產生受熱力驅動的區域環流:海陸風及山谷風。雖然台灣總面積僅有三萬六千多平方公里,但由於本身為聚合板塊交界,地勢變化大且複雜,而目前的WRF-ARW模式並未考慮地形對太陽短波輻射量分布的影響,在地形繁複的臺灣模擬太陽短波入射量會有所失真,賴等人(Lai et al. 2010)使用參數化方法來修改複雜地形下模式各點的短波輻射量數值,但尚未使用在WRF模式的實際個案模擬中,本篇論文便將此方法修改入WRFV3.5.1模式的Goddard radiation scheme中並和原始WRFV3.5.1模式結果相互對照,探討出此方法對模式模擬的影響。
本研究首先使用雙鐘形山地形進行短波輻射地形效應參數化測試,驗證直射短波係數κ以及散射短波係數ν。進一步討論此地形輻射效應對純粹熱力環流的影響,另外設計了狹長雙山地形以及修改WRF模式的初始氣象場進行理想化模式的模擬,結果顯示有考慮地形參數化的模式,對熱力環流的強度及範圍有直接的影響,並且間接改變中高層的風場。
真實個案挑選弱綜觀條件下北台灣 2016 年 8 月 21 日 00 UTC 至 2016 年 8 月 22 日18 UTC的無對流系統及 2016 年 7 月 18 日 00 UTC 至 2016 年 7 月 19 日18 UTC有熱力對流系統的模擬,以一公里網格的高解析度盡量反映真實的臺灣地貌以及對應的參數化係數。無對流系統下的修改版模式和原始模式從水平風場、東西岸垂直剖面以及氣象測站觀測數值對比下,除了看到熱力環流型態的不同,呼應前面理想化所觀察到的現象之外,坡地測站的氣溫及風速模擬也有所改善;而有對流系統個案也能看到考慮地形輻射效應對模式內陸回波位置的掌握度較原始佳,而在坡地測站的氣溫及風速模擬也有優於原板模擬的數值。
此地形參數化對模式模擬影響最大的地點地勢變化都較明顯,希冀未來此參數化法能應用在更大時間範圍尺度的高地形解析模擬上。
摘要(英) The shortwave radiation heating is the main factor of the diurnal temperature deviation, which is critical for local circulation, such as land-sea breeze and mountain-valley flow. In the interaction between shortwave radiation and topography, the tilting slope and terrain blocking effect both play important roles of altering the spatial energy distribution. The phenomenon had been demonstrated and evaluated by using numerical parameterization method (Lai, 2010), but haven’t been implied in atmospheric model simulation. This study uses WRFV3.5.1 model with revised new Goddard shortwave radiation scheme with parameterization of topographic effect to make the comparison with the original WRFV3.5.1 model first simulate an idealized model to see how the shortwave radiation parameterization method affects model simulation.
With three different local time of the comparison between the modified model and the original model, the modified model shows different range and strength on local circulation from the original model nearby slope area.
Due to the diverse geographic elevation of Taiwan, there are two weak synoptic condition case study in northern Taiwan, one with rainy system generate (2016/7/18 00 UTC to 2016/7/19 18 UTC) and the other without (2016/8/21 00 UTC to 2016/8/22 18 UTC), for the two model to simulate.
By the cross-section result, the phenomena we saw in the idealized model simulation still can be seen in real case, and the modified model simulation result also improved the temperature, wind speed and the reflectivity around the complicated geographic area with slope, but in the flat plain area the improvement is insignificant.
As a result, the parameterization method can make a different simulation depends on how diverse geographic elevation of the area, and owing to its more realistic energy distribution, the method will be promising if it is used for long term weather simulation.
關鍵字(中) ★ 輻射地形效應 關鍵字(英) ★ Topo
論文目次 摘要 I
ABSTRACT II
致謝 III
表目錄 VI
圖目錄 VI
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究動機 3
第二章 研究方法 4
2.1 地形輻射參數化方法介紹 4
2.1.1 係數Kappa κ 6
2.1.2 係數Chi ν 7
2.2 理想地形輻射係數測試 8
2.2.1 係數Kappa κ 8
2.2.2 係數Chi ν 9
第三章 理想化模式模擬討論 10
3.1 理想化模式設定 10
3.2 模式結果討論 11
3.2.1 地表入射短波輻射通量分析 11
3.2.2 垂直剖面分析 12
a. 8:00 LST 12
b. 12:00 LST 13
c. 17:30 LST 13
d. 兩者差值日平均 13
e. 討論2~3公里大氣的位溫在Revised 模式較高的原因過程 13
f. 總結 15
第四章 台灣個案模擬討論 16
4.1 模式設定 16
4.2 個案模擬 17
4.2.1 北台灣無降雨系統 17
a. 地表入射短波輻射通量 ( SWDN ) 比較分析 17
b. 海陸風轉換時間點和測站數據比較分析 18
c. 垂直剖面比較分析 19
d. 模式氣溫、風向、風速模擬結果校驗 20
4.2.2 北台灣有降雨系統 21
a. 海陸風轉換時間點和測站數據比較分析 21
b. 雷達回波和觀測資料比較分析 22
c. 模式氣溫、風向、風速模擬結果校驗 22
4.3 統計誤差分析 23
a. 各氣象測站 23
b. D04內所有測站合計 24
第五章 結論及未來展望 25
5.1 結論 25
5.2 未來展望 26
參考文獻 27
附表 30
附圖 34
參考文獻 劉明揚 (2003). "嘉義太陽漫射量之研究." 22 期.

Chou, M. D., and M. J. Suarez, 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Memo. 104606, 15, 40 pp.

Chou, M. D., M. J. Suarez, X. Z. Liang, and M. M. H. Yan, 2001: A thermal infrared radiation parameterization for atmospheric studies. NASA Tech. Memo., 104606, 19, 68 pp.

Cheng, F. Y., Hsu, Y. C., Lin, P. L., 2013: Investigation of the Effects of Different Land Use and Land Cover Patterns on Mesoscale Meteorological Simulations in the Taiwan Area., Journal of Applied Meteorology and Climatology 52(3): 570-587.

Chen, S.-H. and W.-Y. Sun, 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan., 80(1), 99–118.

Chen, Y., A. Hall, and K. N. Liou, 2006: Application of three‐dimensional solar radiative transfer to mountains, J. Geophys. Res., 111, D21111

Dozier, J., and J. Frew, 1990: Rapid calculation of terrain parameters for radiation modeling from digital elevation data, IEEE Trans. Geosci. Remote Sens., 28(5), 963–969

Dubayah, R. C. , 1994: Modeling a SW radiation topoclimatology for the Rio Grande River Basin, J. Veg. Sci., 5, 627–640

Grell, G. A. and Freitas, S. R., 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233-5250, doi:10.5194/acp-14-5233-2014.

Hodgson, M.E., 1995, What Cell Size Does the Computed Slope/ Aspect Angle Represent? Photogrammetric Engineering and Remote Sensing, 61, 513-517.

Hsia, Y. J., and W. S. Wang, 1985: Calculation of potential solar irradiance on slopes (in Chinese with English summary), Res. Note 001 , 28 pp

Janjic, Zavisa I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945.

Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note No. 437, 61 pp

Katurji, M., P. Zawar-Reza, and S. Zhong, 2013: Surface layer response to topographic solar shading in Antarctica’s dry valleys. J. Geophys. Res. Atmos., 118, 12332–12344

Lai, Y.-J., M.-D. Chou, and P.-H. Lin, 2010: Parameterization of topographic effect on
surface solar radiation, J. Geophys. Res., 115, D01104, doi:10.1029/2009JD012305

Lehner, M., C. D. Whiteman, S. W. Hoch, D. D. Jensen, E. R. Pardyjak, L. S. Leo, S. Di Sabatino, and H. J. S. Fernando, 2015: A case study of the nocturnal boundary layer evolution on a slope at the foot of a desert mountain. J. Appl. Meteor. Climatol., 54, 732–751

Liou, K. N., Y. Gu, W. Lee, Y. Chen, and P. Yang, 2008: Some unsolved problems in atmospheric radiative transfer: Implication for climate research in the Asia‐Pacific Region, in Recent Progress in Atmospheric Sciences: Applications to the Asia‐Pacific Region, edited by K. N. Liou, and M.‐D. Chou, chap. 15, pp. 307–325, World Sci., Singapore.

Matzinger, N., M. Andretta, E. Van Gorsel, R. Vogt, A. Ohmura, and M. W. Rotach, 2003: Surface radiationbudget in an alpine valley. Quart. J. Roy. Meteor. Soc., 129, 877–89

Nadeau, D. F., E. R. Pardyjak, C. W. Higgins, H. Huwald, and M. B. Parlange, 2013: Flow during the evening transition over steep alpine slopes. Quart. J. Roy. Meteor. Soc., 139, 607–624

Papadopoulos, K. H., and C. G. Helmis, 1999: Evening and morning transition of katabatic flows. Bound.-Layer Meteor., 92, 195–227

Rich, P. M., R. Dubayah, W. A. Hetrick, and S. C. Saving, 1994: Using viewshed models to calculate intercepted solar radiation: Applications in ecology, technical paper, pp. 524–529, Am. Soc. for Photogramm. and Remote Sens., Bethesda, Md.

Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations––part II. Validation with one dimension off–line simulations. Theor. Appl. Climatol., 99, 345–356.

Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.

Whiteman, C. D., K. J. Allwine, L. J. Fritschen, M. M. Orgill, and J. R. Simpson, 1989a: Deep valley radiation and surface energy budget microclimates. Part I: Radiation. J. Appl. Meteor., 28, 414–426

Zardi, D., and C. D. Whiteman, 2013: Diurnal mountain wind systems. Mountain Weather Research and Forecasting, F. K. Chow, S. F. J. De Wekker, and B. Snyder, Eds., Springer, 35–119.

Hodgson, M.E., 1995, What Cell Size Does the Computed Slope/ Aspect Angle Represent? Photogrammetric Engineering and Remote Sensing, 61, 513-517.
指導教授 林沛練(Pay-Liam Lin) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明