博碩士論文 107621012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.135.183.89
姓名 邱顯榮(Hsien-Jung Chiu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用多頻道衛星觀測評估WRF數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例
(Using Satellite Observation to Evaluate the Cloud Properties of the Microphysical Schemes in WRF Simulation: A Case Study of Mei-yu Front Precipitation System)
相關論文
★ 從衛星觀測看西北太平洋熱帶氣旋快速增強的前兆
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 輻射傳輸模式能夠將大氣變數(例如大氣熱力狀態等)轉變為輻射參數。本研究使用CRTM (Community Radiative Transfer Model)來連結由數值模式所輸出的變數與衛星觀測做驗證。研究內容著重於利用多頻道的地球同步衛星影像-日本向日葵八號衛星來客觀檢驗區域模式-WRF (Weather Research and Forecasting)在使用不同微物理參數化法的模擬表現。四種微物理參數化法被選擇為本研究的參考方案,包括Goddard (GCE)、WRF single-moment 6 class (WSM6)、WRF double-moment 6 class (WDM6)及Morrison (MOR)。我們選擇了2017年6月1日造成臺灣強降雨事件的梅雨天氣型態為本研究的模擬個案來校驗數值模式的表現。
研究結果顯示數值模式在9公里水平解析度的東亞地區大範圍綜觀天氣模擬中,於四種微物理方案皆產生較衛星觀測更多的雲網格覆蓋量,其中又以使用MOR微物理方案的模擬結果產生了較為可觀的高雲量。而使用GCE方案在晴空網格點的水氣頻道模擬結果顯示其具有較佳的水氣收支設定。在敏感性測試上顯示MOR的模擬結果在高度14公里以上的較大量冰雲,可能與模擬產生過多高雲有關。評估3公里水平解析度之高解析數值模擬在臺灣附近的表現則發現,各模擬方案皆能有效掌握有雲格點的分布情形。在點對點的分析中,高雲呈現出三種雲種中最好的分布表現。同時,模擬結果也顯示模式需要較長的模擬時間來掌握低雲的發展情形。
摘要(英) Radiative transfer model could be used to convert the geophysical variables (e.g., atmospheric thermodynamic state) to the radiation field. In this study, the Community Radiative Transfer Model (CRTM) is used to connect numerical weather prediction model outputs and satellite observations. The performance of the regional Weather Research and Forecasting (WRF) model with different microphysics schemes was investigated objectively using multichannel observed satellite radiances at different wavelengths from a Japanese geostationary satellite Himawari-8. Among the schemes, 4 microphysics schemes in WRF (i.e., Goddard [GCE], WRF single-moment 6 class [WSM], WRF double-moment 6 class [WDM], and Morrison schemes [MOR]) were configured in the WRF model to simulate a heavy rainfall event caused by the Mei-Yu front on the June 1, 2017, in the vicinity of Taiwan.
The results over the East Asia domain (9 km) illustrate that all four microphysics schemes produced more cloud cover than observed in the satellite data. A considerable amount of high cloud was displayed in the MOR scheme simulation. However, the simulation with the GCE scheme displayed an improved water vapor budget in clear scenes. Sensitivity tests reveal that the excess condensation of ice at ≥14 km might associate with the high cloud cover and higher cloud-top altitudes. When focusing on Taiwan using a higher (3-km) model resolution, each scheme displayed a decent performance on cloudy pixels. In the grid-by-grid analysis, the distribution of high clouds was the most accurate among the three cloud types. The results also suggested that all schemes required a longer simulation time to describe the low cloud property.
關鍵字(中) ★ 輻射傳輸模式
★ 微物理參數化法
★ 模式校驗
關鍵字(英) ★ Radiative Transfer Model
★ Microphysical scheme
★ Model evaluation/performance
論文目次 摘要 v
Abstract vi
Acknowledgment vii
Outline viii
List of Table x
List of Figures x
Chapter 1 Introduction 1
Chapter 2 Case Description, Model Setup and Data Source 6
2.1 SELECTED MEI-YU CASE 6
2.1.1 Synoptic Weather 6
2.1.2 Evolution of Convection and Precipitation 7
2.2 WRF MODEL CONFIGURATIONS 8
2.3 BT FROM SATELLITE OBSERVATION 9
Chapter 3 Methodology 11
3.1 COMMUNITY RADIATIVE TRANSFER FORWARD MODEL (RTM) 11
3.2 THE HANDLING ON THE CLOUDS IN CRTM 12
3.3 THE CLASSIFICATION OF CLOUD 13
3.4 STATISTICS AND EVALUATION METHOD 14
Chapter 4 Results 16
4.1 CONVENTIONAL DIAGNOSTIC OF SIMULATED METEOROLOGICAL FIELDS 16
4.1.1 Synoptic Meteorological Field 16
4.1.2 Accumulated Rainfall and Rainband 17
4.2 COMPARISON BETWEEN SIMULATED AND OBSERVED BTS 17
4.2.1 Atmospheric Window channel (10.4 ??) Brightness Temperature 17
4.2.2 BTs in Water Vapor Channels 19
4.2.3 Evaluation of Cloud Types in Model 20
4.3 DIAGNOSTIC OF POSSIBLE UNCERTAINTY 22
4.3.1 Sensitivity on Hydrometeor Particle 22
4.3.2 Sensitivity On the Cloud-top Altitude 22
4.4 EVALUATION OF THE CLOUD PATTERN EVOLUTION 23
Chapter 5 Conclusion and Future Work 25
References 28
Appendix 36
參考文獻 Arking, Albert. 1991. ′The Radiative Effects of Clouds and their Impact on Climate′, Bulletin of the American Meteorological Society, 72: 795-814.
Bedka, Kristopher, Jason Brunner, Richard Dworak, Wayne Feltz, Jason Otkin, and Thomas Greenwald. 2010. ′Objective Satellite-Based Detection of Overshooting Tops Using Infrared Window Channel Brightness Temperature Gradients′, Journal of Applied Meteorology and Climatology, 49: 181-202.
Bessho, Kotaro, Kenji Date, Masahiro Hayashi, Akio Ikeda, Takahito Imai, Hidekazu Inoue, Yukihiro Kumagai, Takuya Miyakawa, Hidehiko Murata, Tomoo Ohno, Arata Okuyama, Ryo Oyama, Yukio Sasaki, Yoshio Shimazu, Kazuki Shimoji, Yasuhiko Sumida, Masuo Suzuki, Hidetaka Taniguchi, Hiroaki Tsuchiyama, Daisaku Uesawa, Hironobu Yokota, and Ryo Yoshida. 2016. ′An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites′, Journal of the Meteorological Society of Japan. Ser. II, 94: 151-83.
Chaboureau, J-P, O Nuissier, and C Claud. 2012. ′Verification of ensemble forecasts of Mediterranean high-impact weather events against satellite observations′, Nat. Hazards Earth Syst. Sci., 12.
Chaboureau, Jean‐Pierre, and Jean‐Pierre Pinty. 2006. ′Validation of a cirrus parameterization with Meteosat Second Generation observations′, Geophys. Res. Lett., 33.
Chung, Kao-Shen, Weiguang Chang, Luc Fillion, and Monique Tanguay. 2013. ′Examination of Situation-Dependent Background Error Covariances at the Convective Scale in the Context of the Ensemble Kalman Filter′, Monthly Weather Review, 141: 3369-87.
Cintineo, John L., Michael J. Pavolonis, Justin M. Sieglaff, and Andrew K. Heidinger. 2013. ′Evolution of Severe and Nonsevere Convection Inferred from GOES-Derived Cloud Properties′, Journal of Applied Meteorology and Climatology, 52: 2009-23.
Cintineo, Rebecca, Jason A. Otkin, Ming Xue, and Fanyou Kong. 2014. ′Evaluating the Performance of Planetary Boundary Layer and Cloud Microphysical Parameterization Schemes in Convection-Permitting Ensemble Forecasts Using Synthetic GOES-13 Satellite Observations′, Monthly Weather Review, 142: 163-82.
Dai, Aiguo, Kevin E. Trenberth, and Thomas R. Karl. 1999. ′Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range′, Journal of Climate, 12: 2451-73.
Diaz, J. P., A. González, F. J. Expósito, J. C. Pérez, J. Fernández, M. García-Díez, and D. Taima. 2015. ′WRF multi-physics simulation of clouds in the African region′, Quarterly Journal of the Royal Meteorological Society, 141: 2737-49.
Ding, Shouguo, Ping Yang, Fuzhong Weng, Quanhua Liu, Yong Han, Paul Van Delst, Jun Li, and Bryan Baum. 2011. ′Validation of the community radiative transfer model′, Journal of Quantitative Spectroscopy and Radiative Transfer, 112: 1050-64.
Dudhia, Jimy. 1989. ′Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model′, Journal of the Atmospheric Sciences, 46: 3077-107.
Geng, Biao. 2014. ′Case study of a split front and associated precipitation during the mei-yu season′, Weather and Forecasting, 29: 996-1002.
Grasso, Lewis D., Manajit Sengupta, and Mark Demaria. 2010. ′Comparison between observed and synthetic 6.5 and 10.7 μm GOES-12 imagery of thunderstorms that occurred on 8 May 2003′, International Journal of Remote Sensing, 31: 647-63.
Greenwald, Thomas J., Yong-Keun Lee, Jason A. Otkin, and Tristan L′Ecuyer. 2010. ′Evaluation of midlatitude clouds in a large-scale high-resolution simulation using CloudSat observations′, Journal of Geophysical Research: Atmospheres, 115.
Griffin, Sarah M, Jason A Otkin, Christopher M Rozoff, Justin M Sieglaff, Lee M Cronce, and Curtis R Alexander. 2017. ′Methods for comparing simulated and observed satellite infrared brightness temperatures and what do they tell us?′, Weather and Forecasting, 32: 5-25.
Hong, Song-You, Jimy Dudhia, and Shu-Hua Chen. 2004. ′A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation′, Monthly Weather Review, 132: 103-20.
Hong, Song-You, and Jeong-Ock Jade Lim. 2006. ′The WRF single-moment 6-class microphysics scheme (WSM6)′, Asia-Pacific Journal of Atmospheric Sciences, 42: 129-51.
Hong, Song-You, Yign Noh, and Jimy Dudhia. 2006. ′A new vertical diffusion package with an explicit treatment of entrainment processes′, Monthly Weather Review, 134: 2318-41.
Jankov, Isidora, Jian-Wen Bao, Paul J. Neiman, Paul J. Schultz, Huiling Yuan, and Allen B. White. 2009. ′Evaluation and Comparison of Microphysical Algorithms in ARW-WRF Model Simulations of Atmospheric River Events Affecting the California Coast′, Journal of Hydrometeorology, 10: 847-70.
Jankov, Isidora, Lewis D Grasso, Manajit Sengupta, Paul J Neiman, Dusanka Zupanski, Milija Zupanski, Daniel Lindsey, Donald W Hillger, Daniel L Birkenheuer, and Renate Brummer. 2011. ′An evaluation of five ARW-WRF microphysics schemes using synthetic GOES imagery for an atmospheric river event affecting the California coast′, Journal of Hydrometeorology, 12: 618-33.
Jones, Thomas A., Xuguang Wang, Patrick Skinner, Aaron Johnson, and Yongming Wang. 2018. ′Assimilation of GOES-13 Imager Clear-Sky Water Vapor (6.5 μm) Radiances into a Warn-on-Forecast System′, Monthly Weather Review, 146: 1077-107.
Jung, Youngsun, Ming Xue, and Guifu Zhang. 2010. ′Simulations of Polarimetric Radar Signatures of a Supercell Storm Using a Two-Moment Bulk Microphysics Scheme′, Journal of Applied Meteorology and Climatology, 49: 146-63.
Kain, John S. 2004. ′The Kain–Fritsch Convective Parameterization: An Update′, Journal of Applied Meteorology, 43: 170-81.
Karl, Thomas R., Philip D. Jones, Richard W. Knight, George Kukla, Neil Plummer, Vyacheslav Razuvayev, Kevin P. Gallo, Janette Lindseay, Robert J. Charlson, and Thomas C. Peterson. 1993. ′A New Perspective on Recent Global Warming: Asymmetric Trends of Daily Maximum and Minimum Temperature′, Bulletin of the American Meteorological Society, 74: 1007-24.
Ke, Ching-Yin, Kao-Shen Chung, Tai-Chi Chen Wang, and Yu-Chieng Liou. 2019. ′Analysis of heavy rainfall and barrier-jet evolution during Mei-Yu season using multiple Doppler radar retrievals: a case study on 11 June 2012′, Tellus A: Dynamic Meteorology and Oceanography, 71: 1571369.
Li, Yaping, Edward J. Zipser, Steven K. Krueger, and Mike A. Zulauf. 2008. ′Cloud-Resolving Modeling of Deep Convection during KWAJEX. Part I: Comparison to TRMM Satellite and Ground-Based Radar Observations′, Monthly Weather Review, 136: 2699-712.
Liang, Xing-Ming, Alexander Ignatov, and Yury Kihai. 2009. ′Implementation of the Community Radiative Transfer Model in Advanced Clear-Sky Processor for Oceans and validation against nighttime AVHRR radiances′, Journal of Geophysical Research: Atmospheres, 114.
Lim, Kyo-Sun Sunny, and Song-You Hong. 2010. ′Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models′, Monthly Weather Review, 138: 1587-612.
Liu, C.-Y., J. Li, S. Ho, G. Liu, T. Lin, and C. Young. 2016. ′Retrieval of Atmospheric Thermodynamic State From Synergistic Use of Radio Occultation and Hyperspectral Infrared Radiances Observations′, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9: 744-56.
Liu, Chian-Yi, Meng-Yue Lin, Jen-Her Chen, Mei-Yu Chang, and Ting-Huai Chang. 2020. ′Objective Evaluation of Numerical Weather Model Forecasts by Using Satellite-Observed Radiances.′, IEEE-TGRS. (under review).
Liu, Chian‐Yi, Chi‐Hao Chiu, Po‐Hsiung Lin, and Min Min. 2020. ′Comparison of Cloud‐Top Property Retrievals from Advanced Himawari Imager, MODIS, CloudSat/CPR, CALIPSO/CALIOP, and radiosonde′, Journal of Geophysical Research: Atmospheres: e2020JD032683.
Lupo, Kevin M., Ryan D. Torn, and Shu-Chih Yang. 2019. ′Evaluation of Stochastic Perturbed Parameterization Tendencies on Convective-Permitting Ensemble Forecasts of Heavy Rainfall Events in New York and Taiwan′, Weather and Forecasting, 35: 5-24.
Matsui, Toshi, Jiun-Dar Chern, Wei-Kuo Tao, Stephen Lang, Masaki Satoh, Tempei Hashino, and Takuji Kubota. 2016. ′On the Land–Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models′, Journal of Hydrometeorology, 17: 1425-45.
Mecikalski, John R., and Kristopher M. Bedka. 2006. ′Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery′, Monthly Weather Review, 134: 49-78.
Mlawer, Eli J., Steven J. Taubman, Patrick D. Brown, Michael J. Iacono, and Shepard A. Clough. 1997. ′Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave′, Journal of Geophysical Research: Atmospheres, 102: 16663-82.
Morcrette, Jean-Jacques. 1991. ′Evaluation of model-generated cloudiness: Satellite-observed and model-generated diurnal variability of brightness temperature′, Monthly Weather Review, 119: 1205-24.
Morel, C, and S Senesi. 2002. ′A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems′, Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology physical oceanography, 128: 1973-95.
Morrison, HCJA, JA Curry, and VI Khvorostyanov. 2005. ′A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description′, Journal of the Atmospheric Sciences, 62: 1665-77.
Murata, Hidehiko, Masaya Takahashi, and Yuki Kosaka. 2015. ′VIS and IR bands of Himawari-8/AHI compatible with those of MTSAT-2/Imager′, MSC technical note, 60: 1-18.
Otkin, Jason A., and Thomas J. Greenwald. 2008. ′Comparison of WRF Model-Simulated and MODIS-Derived Cloud Data′, Monthly Weather Review, 136: 1957-70.
Otkin, Jason A., Thomas J. Greenwald, Justin Sieglaff, and Hung-Lung Huang. 2009. ′Validation of a Large-Scale Simulated Brightness Temperature Dataset Using SEVIRI Satellite Observations′, Journal of Applied Meteorology and Climatology, 48: 1613-26.
Parker, Matthew D, and Richard H Johnson. 2000. ′Organizational modes of midlatitude mesoscale convective systems′, Monthly Weather Review, 128: 3413-36.
Pincus, Robert, Crispian P. Batstone, Robert J. Patrick Hofmann, Karl E. Taylor, and Peter J. Glecker. 2008. ′Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models′, Journal of Geophysical Research: Atmospheres, 113.
Ramanathan, V. 1987. ′The role of earth radiation budget studies in climate and general circulation research′, Journal of Geophysical Research: Atmospheres, 92: 4075-95.
Randel, David L., Thomas H. Vonder Haar, Mark A. Ringerud, Graeme L. Stephens, Thomas J. Greenwald, and Cynthia L. Combs. 1996. ′A New Global Water Vapor Dataset′, Bulletin of the American Meteorological Society, 77: 1233-46.
Roebber, Paul J. 2009. ′Visualizing multiple measures of forecast quality′, Weather and Forecasting, 24: 601-08.
Roh, Woosub, Masaki Satoh, and Tomoe Nasuno. 2017. ′Improvement of a Cloud Microphysics Scheme for a Global Nonhydrostatic Model Using TRMM and a Satellite Simulator′, Journal of the Atmospheric Sciences, 74: 167-84.
Satoh, Masaki, Toshiro Inoue, and Hiroaki Miura. 2010. ′Evaluations of cloud properties of global and local cloud system resolving models using CALIPSO and CloudSat simulators′, Journal of Geophysical Research: Atmospheres, 115.
Schaaf, Crystal B., Feng Gao, Alan H. Strahler, Wolfgang Lucht, Xiaowen Li, Trevor Tsang, Nicholas C. Strugnell, Xiaoyang Zhang, Yufang Jin, Jan-Peter Muller, Philip Lewis, Michael Barnsley, Paul Hobson, Mathias Disney, Gareth Roberts, Michael Dunderdale, Christopher Doll, Robert P. d′Entremont, Baoxin Hu, Shunlin Liang, Jeffrey L. Privette, and David Roy. 2002. ′First operational BRDF, albedo nadir reflectance products from MODIS′, Remote Sensing of Environment, 83: 135-48.
Sieglaff, Justin M., Lee M. Cronce, Wayne F. Feltz, Kristopher M. Bedka, Michael J. Pavolonis, and Andrew K. Heidinger. 2011. ′Nowcasting Convective Storm Initiation Using Satellite-Based Box-Averaged Cloud-Top Cooling and Cloud-Type Trends′, Journal of Applied Meteorology and Climatology, 50: 110-26.
Tao, Wei-Kuo, and Mitchell W. Moncrieff. 2009. ′Multiscale cloud system modeling′, Reviews of Geophysics, 47.
Tao, Wei-Kuo, J Simpson, D Baker, S Braun, M-D Chou, B Ferrier, D Johnson, A Khain, S Lang, and B Lynn. 2001. ′Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model′.
Thompson, Gregory, Roy M Rasmussen, and Kevin Manning. 2004. ′Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis′, Monthly Weather Review, 132: 519-42.
Tripoli, Gregory J., and William R. Cotton. 1989. ′Numerical Study of an Observed Orogenic Mesoscale Convective System. Part 2: Analysis of Governing Dynamics′, Monthly Weather Review, 117: 305-28.
Tu, Chuan-Chi, Yi-Leng Chen, Pay-Liam Lin, and Po-Hsiung Lin. 2020. ′The relationship between the boundary layer moisture transport from the South China Sea and heavy rainfall over Taiwan′, Terr. Atmos. Ocean. Sci, 31: 159-76.
Wiedner, Martina, Catherine Prigent, Juan R. Pardo, Olivier Nuissier, Jean-Pierre Chaboureau, Jean-Pierre Pinty, and Patrick Mascart. 2004. ′Modeling of passive microwave responses in convective situations using output from mesoscale models: Comparison with TRMM/TMI satellite observations′, Journal of Geophysical Research: Atmospheres, 109.
Wu, You, Feng Zhang, Kun Wu, Min Min, Wenwen Li, and Renqiang Liu. 2020. ′Best Water Vapor Information Layer of Himawari-8-Based Water Vapor Bands over East Asia′, Sensors, 20: 2394.
Yao, Bin, Chao Liu, Yan Yin, Peng Zhang, Min Min, and Wei Han. 2018. ′Radiance‐based evaluation of WRF cloud properties over East Asia: Direct comparison with FY‐2E observations′, Journal of Geophysical Research: Atmospheres, 123: 4613-29.
Yeh, Hsi-Chyi, and George Tai-Jen Chen. 2004. ′Case study of an unusually heavy rain event over eastern Taiwan during the Mei-yu season′, Monthly Weather Review, 132: 320-37.
Yu, W, G Sèze, H Le Treut, M Desbois, and Oceans. 1991. ′Comparison of radiance fields observed by satellite and simulated by the LMD general circulation model′, Dynamics of Atmospheres, 16: 147-65.
Zhang, Ying, Burkhardt Rockel, Rolf Stuhlmann, Rainer Hollmann, and Ute Karstens. 2001. ′REMO Cloud Modeling: Improvements and Validation with ISCCP DX Data′, Journal of Applied Meteorology, 40: 389-408.
施筱柔. 2019. ′2017年6月2-3日梅雨鋒面個案分析′, 中央大學大氣物理研究所碩士論文.
陳勁宏. ′Analysis of Using Different Microphysics Schemes for the Cloud-Resolving Ensemble forecasts during SoWMEX-IOP8′, 中央大學大氣物理研究所碩士論文.
指導教授 劉千義 鍾高陞(Chian-Yi Liu Kao-Shen Chung) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明