參考文獻 |
[1] Shin, J. H., Jun, H. B. (2015). On condition based maintenance policy. Journal of Computational Design and Engineering, Vol.2, pp.119-127.
[2] Shi, J. H., Wan, J. F., Yan, H. H., Suo, H. (2011). A survey of cyber-physical systems. In International conference on wireless communications and signal processing (WCSP), November 2011.
[3] Lee, J., Lapira, E., Bagheri, B., Kao, H. A. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing Letters, Vol.1, pp.38-41.
[4] Lee, J., Lapira, E., Bagheri, B., Kao, H. A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, Vol.3, pp.18–23.
[5] Lee J., Bagheri B. (2015). Cyber-Physical Systems in Future Maintenance. In: Amadi-Echendu J., Hoohlo C., Mathew J. (Eds.). 9th WCEAM Research Papers. Lecture Notes in Mechanical Engineering. Springer, Cham.
[6] Lee, J., Davari Ardakani H., Yang, S. H., Bagheri, B. (2015). Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. In International Conference on Through-life Engineering Services, Vol.38, pp.3-7.
[7] Lee J., Jin C., Liu Z., Davari Ardakani H. (2017). Introduction to Data-Driven Methodologies for Prognostics and Health Management. In Ekwaro-Osire S., Gonçalves A., Alemayehu F. (Eds.). Probabilistic Prognostics and Health Management of Energy Systems. Springer, Cham
[8] Pecht, M., Jaai, R. (2010). A prognostics and health management roadmap for information and electronics-rich systems. Microelectronics Reliability, Vol. 50, pp.317–323.
[9] Wang, J. J., Ma, Y. L., Zhang, L. B., Gao, R. X., Wu, D. Z. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, Vol.48, pp.144–156.
[10] Schmidhuber, J. (1989). A local learning algorithm for dynamic feedforward and recurrent networks. Connection Science, Vol.1, pp. 403–412.
[11] Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural Computation, Vol.9, pp. 1735–1780.
[12] Cui, Y. M., Wang, S. J., Li, J. F. (2016). LSTM Neural Reordering Feature for Statistical Machine Translation. In Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 977–982.
[13] Venugopalan, S., Hendricks, L. A., Mooney, R., Saenko, K. (2016). Improving LSTM-based Video Description with Linguistic Knowledge Mined from Text. In Conference on Empirical Methods in Natural Language Processing, pp. 1961–1966.
[14] Alguliyev, R. M., Aliguliyev, R. M., Abdullayeva, F. J. (2019). The Improved LSTM and CNN Models for DDoS Attacks Prediction in Social Media. International Journal of Cyber Warfare and Terrorism, Vol. 9, pp.1-18.
[15] Pouladi, F., Salehinejad, H., Gilani, A. M. (2015). Recurrent Neural Networks for Sequential Phenotype Prediction in Genomics. In International Conference on Developments of E-Systems Engineering, pp.225-230.
[16] Malhotra, P., Vig, L. , Shroff, G., Agarwal, P. (2015). Long short-term memory networks for anomaly detection in time series. In: Proceeding of European symposium on artificial neural networks, computational intelligence, and machine learning. pp. 89–94.
[17] Liao, L. X., Ahn, H. I. (2016). Combining Deep Learning and Survival Analysis for Asset Health Management. International Journal of Prognostics and Health Management, Vol.16, pp.1-7.
[18] Zhao, R., Wang, J., Yan, R., Mao, K. (2016). Machine Health Monitoring with LSTM Networks. In International Conference on Sensing Technology (ICST).
[19] Park, D., Kim, S., An, Y., Jung, J. Y. (2018). LiReD: A Light-Weight Real-Time Fault Detection System for Edge Computing Using LSTM Recurrent Neural Networks. Sensors (Basel, Switzerland), Vol.18, pp. 2110-2124.
[20] Zhang, K. , Xu, J. , Min, M. , Jiang, G. , Pelechrinis, K. , Zhang, H. (2016). Automated IT System Failure Prediction: A Deep Learning Approach. In IEEE International Conference on Big Data, pp. 1291-1300.
[21] Gyftakis, K. N., Spyropoulos, D. V., Kappatou, J. C., Mitronikas, E. D. (2013). A Novel Approach for Broken Bar Fault Diagnosis in Induction Motors Through Torque Monitoring, In IEEE Transactions on Energy Conversion, Vol. 28, pp. 267-277.
[22] Olah, C. (2015). Understanding LSTM Networks:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/ |