參考文獻 |
Chapter 1
[1] X. Q. Meng, D. X. Zhao, J. Y. Zhang, D. Z. Shen, Y. M. Lu, L. Dong, Z. Y. Xiao, Y. C. Liu, X. W. Fan, Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing, Chem. Phys. Lett. 413 (2005) 450-453.
[2] P. Rochowski, M. Grzegorczyk, S. Pogorzelski, A wettability-based approach for the monitoring of drug transport through biological membranes, J. Colloid Interface Sci. 555 (2019) 352-360.
[3] R. C. R. da Silva, R. S. Mohamed, A. C. Bannwart, Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow, J. Pet. Sci. Eng. 51 (2006) 17-25.
[4] T. Young, III. An essay on the cohesion of fluids, Philos. Trans. R. Soc. Lond. 95 (1805) 65-87.
[5] Y. Yuan, T. R. Lee, Contact angle and wetting properties, Surface science techniques (2013) 3-34. Springer, Berlin, Heidelberg.
[6] S. Ebnesajjad, Surface tension and its measurement, In Handbook of Adhesives and Surface Preparation, (2011) 21-30. William Andrew Publishing.
[7] F. M. Chang, S. J. Hong, Y. J. Sheng, H. K. Tsao, High contact angle hysteresis of superhydrophobic surfaces: hydrophobic defects, Appl. Phys. Lett. 95 (2009) 064102.
[8] S. J. Hong, F. M. Chang, T. H. Chou, S. H. Chan, Y. J. Sheng, H. K. Tsao, Anomalous contact angle hysteresis of a captive bubble: advancing contact line pinning. Langmuir 27 (2011) 6890-6896.
[9] Y. F. Li, Y. J. Sheng, H. K. Tsao, Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis, Langmuir 29 (2013) 7802-7811.
[10] S. K. Rhee, Wetting of ceramics by liquid metals, J. Am. Ceram. Soc. 54 (1971) 332-334.
[11] D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima, H. Fujimura, Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface, J. Chem. Phys. 140 (2014) 034505.
[12] H. Jiang, F. Müller-Plathe, A. Z. Panagiotopoulos, Contact angles from Young’s equation in molecular dynamics simulations, J. Chem. Phys. 147 (2017) 084708.
[13] S. K. Das, K. Binder, Does Young′s equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid. EPL 92 (2010) 26006.
[14] J. C. Fernandez-Toledano, T. D. Blake, J. De Coninck, Young’s equation for a two-liquid system on the nanometer scale, Langmuir 33 (2017) 2929-2938.
[15] N. Kumar, S. Kumbhat, Essentials in Nanoscience and Nanotechnology, John Wiley & Sons Inc. 2016.
[16] L. S. Sundar, M. H. Farooky, S. N. Sarada, M. K. Singh, Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids, Int. Commun. Heat Mass Transf. 41 (2013) 41-46.
[17] T. Pompe, S. Herminghaus, Three-phase contact line energetics from nanoscale liquid surface topographies, Phys. Rev. Lett. 85 (2000) 1930.
[18] A. Amirfazli, A. W. Neumann, Status of the three-phase line tension: a review, Adv. Colloid Interface Sci. 110 (2004) 121-141.
[19] M. Khalkhali, N. Kazemi, H. Zhang, Q. Liu, Wetting at the nanoscale: A molecular dynamics study, J. Chem. Phys. 146 (2017) 114704.
[20] T. Ingebrigtsen, S. Toxvaerd, Contact angles of Lennard-Jones liquids and droplets on planar surfaces, J. Phys. Chem. C 111 (2007) 8518-8523.
[21] S. Dixit, J. Crain, W. C. K. Poon, J. L. Finney, A. K. Soper, Molecular segregation observed in a concentrated alcohol–water solution, Nature 416 (2002) 829-832.
[22] P. J. Flory, Principles of polymer chemistry, Cornell University Press (1953).
[23] H.-O. Johansson, G. Karlström, F. Tjerneld, C. A. Haynes, Driving forces for phase separation and partitioning in aqueous two-phase systems, J. Chromatogr. B 711 (1998) 3–17.
[24] G. Vazquez, E. Alvarez, J. M. Navaza, Surface tension of alcohol water+water from 20 to 50. degree. C, J. Chem. Eng. Data 40 (1995) 611-614.
[25] P.B. Warren, Vapor-liquid coexistence in many-body dissipative particle dynamics, Phys, Rev. E 68 (2003). 066702.
[26] C. Chen, L. Zhuang, X. Li, J. Dong, J. Lu, A many-body dissipative particle dynamics study of forced water–oil displacement in capillary, Langmuir 28 (2011) 1330–1336.
[27] A. Ghoufi, J. Emile, P. Malfreyt, Recent advances in many body dissipative particles dynamics simulations of liquid-vapor interfaces, Eur. Phys. J. E-Soft Matter 36 (2013) 10.
[28] K.C. Chu, Y.J. Sheng, H.K. Tsao, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, J. Colloid Interface Sci. 538 (2019) 340–348.
[29] A. F. Jakobsen, Constant-pressure and constant-surface tension simulations in dissipative particle dynamics, J. Chem. Phys. 122 (2005) 124901.
[30] M. Liu, P. Meakin, H. Huang, Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction, J. Comput. Phys. 222 (2007) 110–130.
[31] M. Arienti, W. Pan, X. Li, G. Karniadakis, Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions, J. Chem. Phys. 134 (2011) 204114.
[32] A. Ghoufi, P. Malfreyt, Calculation of the surface tension from multibody dissipative particle dynamics and Monte Carlo methods, Phys, Rev. E 82 (2010) 016706.
[33] K. C. Chu, H. K. Tsao, Y. J. Sheng, Penetration dynamics through nanometer-scale hydrophilic capillaries: Beyond Washburn’s equation and extended menisci, J. Colloid Interface Sci. 538 (2019) 340-348.
[34] K. C. Chu, H. K. Tsao, Y. J. Sheng, Pressure-gated capillary nanovalves based on liquid nanofilms, J. Colloid Interface Sci. 560 (2020) 485-491.
[35] T. Bodnár, G. P. Galdi, Š. Nečasová, Particles in Flows (2017) Springer International Publishing.
[36] J.H. Irving, J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J. Chem. Phys. 18 (1950) 817– 829.
[37] D. B. Macleod, On a relation between surface tension and density, J. Chem. Soc. Faraday Trans. 19 (1923) 38-41.
[38] D. Seveno, T. D. Blake, J. De Coninck, Young’s equation at the nanoscale, Phys. Rev. Lett. 111 (2013) 096101.
[39] J. C. Fernandez-Toledano, T. D. Blake, P. Lambert, J. De Coninck, On the cohesion of fluids and their adhesion to solids: Young′s equation at the atomic scale, Adv. Colloid Interface Sci. 245 (2017) 102-107.
[40] Z. Zhang, W. Wang, A. N. Korpacz, C. R. Dufour, Z. J. Weiland, C. R. Lambert, M. T. Timko, Binary Liquid Mixture Contact-Angle Measurements for Precise Estimation of Surface Free Energy, Langmuir 35 (2019) 12317-12325.
[41] J. Sun, S. L. Simon, The melting behavior of aluminum nanoparticles, Thermochim Acta 463 (2007) 32-40.
[42] M. M. Elokr, R. Awad, A. A. El-Ghany, A. A. Shama, A. A. El-Wanis, Effect of nano-sized ZnO on the physical properties of (Cu0.5Tl0.25Pb0.25)Ba2Ca2Cu3O10−δ, J. Supercond. Nov. Magn. 24 (2011) 1345-1352.
[43] K. C. Chu, S. W. Hu, H. K. Tsao, Y. J. Sheng, Strong competition between adsorption and aggregation of surfactant in nanoscale systems, J. Colloid Interface Sci. 553 (2019) 674-681.
[44] L. G.MacDowell, J. Benet, N. A. Katcho, J. M. Palanco, Disjoining pressure and the film-height-dependent surface tension of thin liquid films: New insight from capillary wave fluctuations, Adv. Colloid Interface Sci. 206 (2014) 150-171.
[45] V. V. Yaminsky, S. Ohnishi, E. A. Vogler, R. G. Horn,. Stability of aqueous films between bubbles. Part 1. The effect of speed on bubble coalescence in purified water and simple electrolyte solutions, Langmuir 26 (2010) 8061-8074.
[46] Y. Yamaguchi, H. Kusudo, D. Surblys, T. Omori, G. Kikugawa, Interpretation of Young’s equation for a liquid droplet on a flat and smooth solid surface: Mechanical and thermodynamic routes with a simple Lennard-Jones liquid, J. Chem. Phys. 150 (2019) 044701.
[47] M. Zhao, X. Yang, Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores, J. Phys. Chem. C 119 (2015) 21664-21673.
[48] T. F. Schaub, G. J. Kellogg, A. M. Mayes, R. Kulasekere, J. F. Ankner, H. Kaiser, Surface modification via chain end segregation in polymer blends, Macromolecules 29 (1996) 3982-3990.
Chapter 2
[1] H. Hölscher, D. Ebeling, U. D. Schwarz, Friction at atomic-scale surface steps: experiment and theory, Phys. Rev. Lett. 101 (2008) 246105.
[2] J. G. Vilhena, C. Pimentel, P. Pedraz, F. Luo, P. A. Serena, C. M. Pina, R. Pérez, Atomic-scale sliding friction on graphene in water, ACS nano 10 (2016) 4288-4293.
[3] W. Ouyang, A. S. de Wijn, M. Urbakh, Atomic-scale sliding friction on a contaminated surface, Nanoscale 10 (2018) 6375-6381.
[4] C. Gachot, A. Rosenkranz, R. Buchheit, N. Souza, F. Mücklich, Tailored frictional properties by Penrose inspired surfaces produced by direct laser interference patterning, Appl. Surf. Sci. 367 (2016) 174-180.
[5] J. Blass, M. Albrecht, B. L. Bozna, G. Wenz, R. Bennewitz, Dynamic effects in friction and adhesion through cooperative rupture and formation of supramolecular bonds, Nanoscale 7 (2015) 7674-7681.
[6] K. Keseroğlu, M. Çulha, Assembly of nanoparticles at the contact line of a drying droplet under the influence of a dipped tip, J. Colloid Interface Sci. 360 (2011) 8-14.
[7] Y. V. Kalinin, V. Berejnov, R. E. Thorne, Contact line pinning by microfabricated patterns: effects of microscale topography, Langmuir 25 (2009) 5391-5397.
[8] L. Guo, G. H. Tang, S. Kumar, Droplet Morphology and Mobility on Lubricant-Impregnated Surfaces: A Molecular Dynamics Study, Langmuir 35 (2019) 16377-16387.
[9] D. Daniel, J. V.Timonen, R. Li, S. J. Velling, J. Aizenberg, Oleoplaning droplets on lubricated surfaces, Nat. Phys. 13 (2017) 1020-1025.
[10] F. Schellenberger, J. Xie, N. Encinas, A. Hardy, M. Klapper, P. Papadopoulos, D. Vollmer, Direct observation of drops on slippery lubricant-infused surfaces, Soft Matter 11 (2015) 7617-7626.
[11] W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen, G. H. McKinley, A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, J. Colloid Interface Sci. 339 (2009) 208-216.
[12] E. Bormashenko, Why does the Cassie–Baxter equation apply?, Colloids Surf. A Physicochem. Eng. Asp. 324 (2008) 47-50.
[13] R. N. Wenzel, Surface roughness and contact angle, J. Phys. Chem. A 53 (1949) 1466-1467.
[14] V. Belaud, S. Valette, G. Stremsdoerfer, M. Bigerelle, S. Benayoun, Wettability versus roughness: Multi-scales approach, Tribol Int 82 (2015) 343-349. |