博碩士論文 107324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.142.96.146
姓名 闕雅婷(Ya-Ting Chueh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以銅錳鋁觸媒進行酯氫解反應之研究
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 醇類在許多化學反應中是極為重要的化學材料,可廣泛用於工業中,而銅系觸媒近年來也因為高選擇性及高轉化率獲得很大的關注。本研究旨在開發一個己二酸二甲酯氫解成己二醇及己二酸二甲酯氫解成 1,6-己二醇的酯氫解的異相觸媒,研究的方法是先根據文獻資料篩選一些具潛力的觸媒及促進劑,實際進行觸媒的合成,並測試各合成觸媒的活性,探討促進劑的效應,所合成的觸媒並以 XRD, TEM, HRTEM,ASAP 等儀器鑑定,以瞭解所合成觸媒的性質及影響觸媒活性的原因。Cu-Mn-Al 觸媒含有高成分
的銅,具有特殊的微觀結構,氧化物觸媒於 190-230℃的溫度下用稀釋的氫氣活化,氧化銅將完全還原成銅,並均勻分散在 MnO2/Al2O3 中,可合成奈米級的銅觸媒顆粒,用於很多氫化及氫解反應,具高活性、高選擇性及高的壽命。在多種可能的材料中,選擇錳是因為它產生的副產物少、無毒、弱路易士酸以及錳和己二酸二甲酯的氫解反應速率高。在本研究中,使用了共沉澱法,測試不同的製備方法,發現鈉離子的殘留會嚴重影響反應的轉化率及選擇率,其中 Na2CO3 加入 Cu-Mn-Al 混合溶液進行共沉澱的製備方法,能在水洗的步驟中,最輕易的將鈉離子的含量降低,且水洗的方式必須將沉澱後的濾餅加水,利用磁石攪拌器來攪拌均勻,才能充分的降低鈉離子含量。最佳的觸媒合成方法為 pH 值控制在 9,在 343 K 的溫度下,與 Na2CO3 溶液共沉澱而獲得,於 750K 的溫度下進行燒,此反應在高壓的批式反應器中進行,壓力為 90 kg/cm2,溫度為 220 0C,實驗的最佳條件 Cu/Mn/Al 的重量比為 64.3/15/20.7、pH 值為九且鍛燒溫度為 7500C,在此條件下,得到最佳的轉化率為 94.5%且選擇率也高達 92.9%。
摘要(英) This study was to develop a heterogeneous Cu-based catalyst for the hydrogenation of dimethyl adipate (DMA) to hexanediol (HDO). In the past decades, copper-based catalyst has attracted much attention due to its high activity and selectivity in the gas-phase hydrogenation
of esters. In this research, first select some potential catalysts and accelerators based on
literature information, and actually carry out the synthesis of the catalyst. Test the activity of
each synthetic catalyst, and discuss the effect of the accelerator. The catalysts were prepared by
co-precipitation method under different conditions. XRD, TEM, HRTEM, ASAP analysis were
used to characterize the catalyst. Of a wide variety of possible material, manganese is chosen
because it is less by-product produced, toxic-free, weak Lewis acid and high reaction rate of
hydrogenolysis of dimethyl adipate. The Cu-Mn-Al catalyst contains high-content copper and
has a special microstructure. The oxide catalyst is activated with diluted hydrogen gas at a
temperature of 190-230 °C. The copper oxide will be completely reduced to copper and evenly
dispersed in MnO2/Al2O3, which can synthesize nano-level copper catalyst particles and can be
used in many hydrogenation and hydrogenolysis methods. It has with high activity, high
selectivity .The reactions were carried out in a high pressure batch reactor under 90 kg/cm2
and
220 0C. The following preparation parameters were studied: Cu/Mn/Al weight ratios, pH value,
aging time, and calcination temperature. It was found that the catalyst prepared with Cu/Mn/Al
weight ratios 64.3/10/25.7, pH value of 9, and calcination temperature of 750 oC had the highest
conversion rate of 91.3% and the highest hexanediols selectivity of 89.8% among all catalysts.
關鍵字(中) ★ 銅系觸媒
★ 共沉澱法
★ 氫解反應
關鍵字(英) ★ Cu catalyst
★ MnO2
★ co-precipitation
★ hydrogenolysis
論文目次 Table of Contents
中文摘要.....................................................................................................................................I
Abstract...................................................................................................................................... II
Table of Contents......................................................................................................................III
List of Tables .............................................................................................................................V
List of Figures...........................................................................................................................VI
CHAPTER 1 INTRODUCTION................................................................................................1
CHAPTER 2 LITERATURE REVIEW .....................................................................................3
2.1 The Characteristic of Haxanediol .................................................................................3
2.1.1 Application ........................................................................................................3
2.1.2 Synthesis Methods.............................................................................................3
2.2 Preparation Methods of Metal Catalysts ......................................................................4
2.2.1 Selection of Promoter........................................................................................4
2.2.2 Selection of precipitant......................................................................................4
2.2.3 Co-precipitation method....................................................................................5
2.2.4 Drying................................................................................................................6
CHAPTER3 EXPERIMENTAL.................................................................................................8
3.1 Material.........................................................................................................................8
3.2 Preparation of Cu/Mn/Al Catalysts ..............................................................................8
3.3 Washing of the precipitate .......................................................................................... 11
3.4 Structure and Properties of Catalyst ........................................................................... 11
3.4.1 X-ray diffraction (XRD)..................................................................................12
3.4.2 Specific surface and porosimetry analyzer (ASAP)........................................12
3.4.3 Transmission electron microscopy (TEM) ......................................................13
IV
3.4.4 High resolution transmission electron microscopy (HRTEM)........................13
3.5 Hydrogenolysis Reaction............................................................................................14
CHAPTER 4 CHARACTERISTICS OF Cu/Mn/Al CATALYSTS .........................................15
4.1 Introduction ................................................................................................................15
4.2 Results and Discussion ...............................................................................................16
4.2.1 Reaction test ....................................................................................................16
4.2.2 XRD.................................................................................................................17
4.2.3 ASAP ...............................................................................................................21
4.2.4 TEM.................................................................................................................25
4.2.5 HRTEM ...........................................................................................................32
4.3 Conclusion..................................................................................................................47
REFERENCE ...........................................................................................................................48
參考文獻 REFERENCE
Cao, H., Li, X., Chen, Y., Gong, M., Wang, J. (2012). "Effect of loading content of copper
oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene."
Journal of Rare Earths 30(9): 871-877.
Gao, P., Li, F., Zhang, L., Zhao, N., Xiao, F., Wei, W., Zhong, L., Sun, Y. (2013). "Influence
of fluorine on the performance of fluorine-modified Cu/Zn/Al catalysts for CO2 hydrogenation
to methanol." Journal of CO2 Utilization 2: 16-23.
Kikhtyanin, O., Pospelova, V., Aubrecht, J., Lhotka, M., Kubička, D. (2018). "Effect of
Calcination Atmosphere and Temperature on the Hydrogenolysis Activity and Selectivity of
Copper-Zinc Catalysts." Catalysts 8(10): 446.
Lok, M. (2009). Coprecipitation, (Synthesis of Solid Catalysts). K. P. de Jong ed. Wiley.
Parikh, D. (2014). "Solids Drying: Basics and Applications." Chemical Engineering -New
York- Mcgraw Hill Incorporated then Chemical Week Publishing Llc- 121.
Qi, G., Xiao, M., Jin, H., Zhao, Y. (2010). "Characterization and Activity of Cu‐MnOx /γ‐
Al2O3 Catalyst for Hydrogenation of Carbon Dioxide." Chinese Journal of Chemistry 19(5):
441-448.
Rane, A., Kanny, K., Abitha, V., Thomas, S. (2018). Methods for Synthesis of Nanoparticles
and Fabrication of Nanocomposites. Synthesis of Inorganic Nanomaterials: 121-139.
49
Richardson, J. T. and J. L. Propp (1986). "Pore size effects on sintering of NiAl2O3 catalysts."
Journal of Catalysis 98(2): 457-467.
Sadeghinia, M., Nemati Kharat Ghaziani, A., Rezaei, M. (2018). "Component ratio dependent
Cu/Zn/Al structure sensitive catalyst in CO 2 /CO hydrogenation to methanol." Molecular
Catalysis 456: 38-48.
Yang, H., Chen, Y., Cui, X., Wang, G., Cen, Y., Deng, T., Yan, W., Gao, J., Zhu, S., Olsbye,
U., Wang, J., Fan, W., (2018). "A Highly Stable Copper-Based Catalyst for Clarifying the
Catalytic Roles of Cu (0) and Cu(+) Species in Methanol Dehydrogenation." Angew Chem Int
Ed Engl 57(7): 1836-1840.
Yuan, P., Liu, Z., Hu, T., Sun, H., Liu, S. (2010). "Highly efficient Cu–Zn–Al catalyst for the
hydrogenation of dimethyl adipate to 1,6-hexanediol: influence of calcination temperature."
Reaction Kinetics, Mechanisms and Catalysis 100: 427-439.
王丹君,陶芙蓉,趙華華,宋煥玲,丑凌軍 (2011). "Preparation of Cu/ZnO/Al2O3 Catalyst
via Coprecipition-amonia Evaporation for Methanol Synthesis from CO2 and H2." Journal of
Molecular Catalysis (china) 25(2): 1001-3555.
陳怡先 (2019). 鈀銅/二氧化矽雙金屬催化劑之製備及對其性質之影響. 化學工程與材
料工程學系, 國立中央大學. 碩士論文.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2020-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明