參考文獻 |
[1] Andrei, N. “An acceleration of gradient descent algorithm with backtracking for unconstrained optimization”, Numerical Algorithms, 42.1, pp. 63-73, 2006.
[2] Armijo, L. “Minimization of functions having Lipschitz continuous first partial derivatives”, Pac. J. Math, 6, pp. 1-3, 1966.
[3] Barton, Russell R., Martin M. “Metamodel-based simulation optimization”, Handbooks in operations research and management science, 13, pp. 535-574, 2006.
[4] Bartz-Beielstein, T., Preuss, M. “Experimental research in evolutionary computation”, Proceedings of the 9th annual conference companion on Genetic and evolutionary computation, 2007.
[5] Cahya, S., Del Castillo, E., Peterson, J. J. “Computation of confidence regions for optimal factor levels in constrained response surface problems”, Journal of Computational and Graphical Statistics, 13.2, pp. 499-518, 2004.
[6] Carson, Y, Maria, A. “Simulation optimization: methods and applications”, Proceedings of the 29th conference on Winter simulation, 1997.
[7] Chang, K. H., Hong, L. J., Wan, H. “Stochastic trust region gradient-free method (STRONG)-a new response-surface-based algorithm in simulation optimization”, 2007 Winter Simulation Conference, 2007.
[8] Chau, M., et al. “Simulation optimization: a tutorial overview and recent developments in gradient-based methods”, Proceedings of the Winter Simulation Conference 2014. IEEE, 2014.
[9] Chau, M., Qu, H., Fu, M. C. “A New Hybrid Stochastic Approximation Algorithm”, IFAC Proceedings Volumes, 47.2, pp. 241-246, 2014.
[10] Fletcher, R. “Practical Methods of Optimization”, Wiley, 1987.
[11] Fu, M. C. “Optimization via Simulation: A Review”, Annals of Operations Research, 53.1, pp. 199-247, 1994.
[12] Fu, M. C., H. Qu. “Regression Models Augmented with Direct Stochastic Gradient Estimators”, INFORMS Journal on Computing, 26.3, pp. 484–499, 2014.
[13] Ghadimi, S., G. Lan. “Stochastic Approximation Methods and Their Finite-Time Convergence Properties”, Handbook of Simulation Optimization, pp. 179–206, 2015.
[14] Glasserman, P. Gradient Estimation via Perturbation Analysis. Vol. 116. Springer Science & Business Media, 1991.
[15] Goldstein, A. A., On Steepest Descent, SIAM Journal on Control, Vol. 3, pp. 147-151, 1965.
[16] Goldstein, A. A., Constructive Real Analysis, Harpers and Row, New York, New York, 1967.
[17] Goldstein, A. A., Price, J. F. “An effective algorithm for minimization”, Numerische Mathematik, 10.3, pp. 184-189, 1967.
[18] Grippo, L., Lampariello, F., Lucidi, S. “A nonmonotone line search technique for Newton′s method”, SIAM Journal on Numerical Analysis, 23.4, pp. 707-716, 1986.
[19] Hedar, A. R. “Global optimization test problems”, 2007.
[20] Hill, W. J., Hunter, W. G. “A review of response surface methodology: a literature survey”, Technometrics, 8.4, pp. 571-590, 1966.
[21] Ho, Y. C., X. Cao. “Perturbation Analysis and Optimization of Queueing Networks”, Journal of Optimization Theory and Applications, 40.4, pp. 559–582, 1983.
[22] Ho, Y. C., Shi, L., Dai, L., Gong, W. B. “Optimizing Discrete Event Dynamic Systems via the Gradient Surface Method”, Discrete Event Dynamic Systems 2.2, pp. 99–120, 1992.
[23] Horng, J. T., Liu, N. M., Chiang, K. T. “Investigating the Machinability Evaluation of Hadfield Steel in the Hard Turning with Al2O3/TiC Mixed Ceramic Cool Based on the Response Surface Methodology”, Journal of Materials Processing Technology, 208.1, pp. 532-541, 2008.
[24] Jamil, M., Yang, X. S. “A Literature Survey of Benchmark Functions for Global Optimization Problems”, arXiv preprint arXiv, 1308.4008, 2013.
[25] Keyzer, F., Kleijnen, J., Mullenders, E., et al. “Optimization of Priority Class Queues, with a Computer Center Case Study”, American Journal of Mathematical and Management Sciences 1.4, pp. 341– 358, 1981.
[26] Kim, W. B., Draper, N. R. “Choosing a Design for Straight Line Fits to Two Correlated Responses”, Statistica Sinica, 4.1, pp. 275-280, 1994.
[27] Kleijnen, J. P. C. “Response Surface Methodology”, Handbook of Simulation Optimization, pp. 81-104, 2015.
[28] Krafft, O., Schaefer, M. 1992. “D-optimal Designs for a Multivariate Regression Model”, Journal of Multivariate Analysis, 42.1, pp. 130-140, 1992.
[29] Law, A. M., Kelton, W. D. 2007. “Simulation Modeling and Analysis”, McGraw-Hill, 2007.
[30] Lemaréchal, C. “A view of line-searches”, Optimization and Optimal Control. pp. 59-78, 1981.
[31] Li, Y. C., Fu, M. C. “Sequential first-order response surface methodology augmented with direct gradients”, 2018 Winter Simulation Conference (WSC). IEEE, 2018.
[32] Mead, R., Pike, D. J. “A Biometrics Invited Paper. A Review of Response Surface Methodology from a Biometric Viewpoint”, Biometrics, 31.4, pp. 803-851, 1975.
[33] Miro-Quesada, G., Castillo, E. D. “An Enhanced Recursive Stopping Rule for Steepest Ascent Searches in Response Surface Methodology”, Communications in Statistics-Simulation and Computation, 33.1, pp. 201-228, 2004.
[34] Moré, J. J., Thuente, D. J. “Line search algorithms with guaranteed sufficient decrease”, ACM Transactions on Mathematical Software (TOMS), 20.3, pp. 286-307, 1994.
[35] Myers, R. H., Khuri, A. I., Carter, W. H. “Response Surface Methodology: 1966-1988”, Technometrics, 31.2, pp. 137-157, 1989.
[36] Nemirovski, A. S., Juditsky, A., Lan, G. et al. “Robust Stochastic Approximation Approach to Stochastic Programming”, SIAM Journal on Optimization 19.4, pp. 1574–1609, 2009.
[37] Nocedal, J., Yuan, Y. “Combining Trust Region and Line Search Techniques”, Advances in Nonlinear Programming, pp. 153-175, 1998.
[38] Nocedal, J., Wright, S. J. Numerical optimization, pp. 36-63, 1999.
[39] Plackett, R. L., Burman, J. P. “The Design of Optimum Multifactorial Experiments”. Biometrika, 3.4, pp. 305-325, 1946.
[40] Potra, F. A., Shi, Y. “Efficient line search algorithm for unconstrained optimization”, Journal of Optimization Theory and Applications, 85.3, pp. 677-704, 1995.
[41] Powell, M. J. D. “Some global convergence properties of a variable-metric algorithm for minimization without exact line searches”, Nonlinear programming 9 ,53, 1976.
[42] Raydan, M. “The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem”, SIAM Journal on Optimization, 7.1, pp. 26-33, 1997.
[43] Schropp, J. “A note on minimization problems and multistep methods”, Numeric Mathematic, 78, pp. 87-101, 1997.
[44] Schropp, J. “One-step and multistep procedures for constrained minimization problems”, IMA Journal of Numerical Analysis, 20, pp. 135-152, 2000.
[45] Shi, Z. J. “Convergence of line search methods for unconstrained optimization”, Applied Mathematics and Computation, 157.2, pp. 393-405, 2004.
[46] Wächter, A., Biegler, L. T. “On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming”, Mathematical programming, 106.1, pp. 25-27, 2006.
[47] Waltz, R. A., Morales, J. L., Nocedal, J., et al. “An interior algorithm for nonlinear optimization that combines line search and trust region steps”, Mathematical Programming, 107.3, pp. 391-408, 2005.
[48] Wolfowitz, J. “On the Stochastic Approximation Method of Robbins and Monro”, The Annals of Mathematical Statistics, 23.3, pp. 457-461, 1952.
[49] Wu, S. M. “Tool-life testing by response surface methodology—Part 1”, pp. 105-110, 1964.
[50] Yuan, G., Wei, Z. “New line search methods for unconstrained optimization”, Journal of the Korean Statistical Society, 38.1, pp. 29-39, 2009. |