博碩士論文 107223013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.145.38.117
姓名 張楷杰(KAI-CHIEH CHANG)  查詢紙本館藏   畢業系所 化學學系
論文名稱 聚(2,5-苯並咪唑)與官能基化氧化石墨烯之複合材料應用於中高溫質子交換薄膜
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 與傳統質子交換膜燃料電池相比高溫型質子交換膜燃料電池擁有較快的電化學反應速度、較高的一氧化碳耐受度和不需要複雜的水管理等優點。能展現優越高溫型燃料電池特點最關鍵的元件是質子交換膜。為使電池能發揮較好效能一個良好的高溫型質子交換薄膜,除了必須具備高質子導電度之外還需要具備化學穩定性和一定程度的機械強度使其能延長使用壽命。目前較常使用的在高溫型質子交換膜材料為PBI (polybenzimidazole)高分子材料,此種材料雖然具有很高的磷酸摻雜水平,但在高度吸附磷酸之後會導致其機械強度的下降,除此之外,此材料成本昂貴不利於廣泛使用,因此開發一種在高溫環境下仍具有良好的質子導電度、化學穩定性和機械強度的質子交換薄膜是許多學者的研究目標。
本研究選用聚2,5-苯並咪唑(ABPBI)高分子,此種材料比起PBI成本較低且合成方法簡單,只需要一種單體且一聚合步驟即可完成。因其具有鹼性的苯並咪唑(benzimidazole)結構,具備耐高溫和良好磷酸的摻雜能力,因此ABPBI可以與磷酸產生酸鹼作用力,使ABPBI擁有吸附磷酸的能力。此類高溫型燃料電池薄膜即以磷酸做為質子傳遞的介質。為改善物性本研究選用了官能基化氧化石墨烯(graphene oxide) 作為添加物。該添加物乃在為氧化石墨烯的結構接上苯並咪唑(benzimidazole)官能基團。以這樣設計的官能基化石墨烯的目的一方面是提高氧化石墨烯的分散性,另一方面可以用於吸附更多的磷酸,提高薄膜磷酸的摻雜量,增加薄膜導電度。氧化石墨烯結構上的含氧官能基團(如:羥基、羧基)也可以在薄膜體系中提供更有效的新穎質子傳遞通道,進一步的提高薄膜的質子導電度。
為更進一步改善導電及機械物性,我們依據本實驗室先前研究的方法以外加電場誘導產生具有順向排列紋理之隔離膜。薄膜中的孔道形成具有方向性的優先取向結構,提供更直接的質子傳遞路徑,增加薄膜傳遞質子的效率。以添加2 wt%的官能基化氧化石墨烯的薄膜(ABPBI-2)為例薄膜經過外加電場誘導後,質子導電度達到0.063 S/cm;相較於原始的ABPBI薄膜導電度提升了大約3倍。氧化石墨烯具有的含氧官能基會與磷酸形成氫鍵,提高薄膜保存磷酸的能力,避免薄膜在高溫操作下造成磷酸的流失,磷酸流失率從28%減少至10%,在高溫下有較好的質子導電度穩定性。另外在化學穩定性方面,官能基化的氧化石墨烯與ABPBI高分子之間的氫鍵可以增加薄膜分子間作用力,使薄膜的化學穩定性提高了約20%,延長薄膜的使用壽命。
摘要(英) High-temperature proton exchange membrane fuel cell have many advantages, such as a simple water and cooling system, higher catalytic activity and enhanced tolerance to carbon monoxide. An excellent high-temperature proton exchange membrane must have high electrical conductivity, chemical stability and mechanical strength. The most commonly used material for high-temperature proton exchange membranes is PBI (polybenzimidazole). Although the material has a very high level of phosphoric acid doping, it will lead to a decrease in the mechanical strength after highly adsorbed phosphoric acid. In addition, this material is expensive not suitable for widespread use. Therefore, the development of proton exchange membranes with good proton conductivity, chemical stability and mechanical strength under high temperature environment is the research goal of many scholars.
In this study, we use ABPBI polymer, which is cheaper than PBI and simple in synthesis. ABPBI has an imidazole functional group that can adsorb phosphoric acid. Acid−base pairs composed of imidazole and phosphoric acid can realize proton conductivity. In addition, we chose graphene oxide as an additive. The graphene oxide is functionalized to connect the benzimidazole functional group. The purpose of the functionalization is to increase the dispersibility of graphene oxide and adsorb more phosphoric acid to increase the membrane conductivity.
The optimal content of functionalized graphite oxide is 2 wt % (ABPBI-2 membrane). By applying an external electric field create a preferential orientation structure with directionality. This structure forms a more direct proton transfer path and increases the efficiency of the membrane to transfer protons. The proton conductivity of APBBI-2 membrane reaches 0.063 S/cm which are 3 times higher than the original ABPBI membrane. The oxygen contained functional group of graphene oxide forms a hydrogen bond with phosphoric acid, which increases the ability of the membrane to retain phosphoric acid. The phosphoric acid loss rate is reduced from 28% to 10%. In addition, the hydrogen bonding force between the functionalized graphene oxide and the ABPBI polymer can increase the intermolecular force which improve the chemical stability for 20%.
關鍵字(中) ★ 燃料電池
★ 高溫質子交換薄膜
關鍵字(英)
論文目次 中文摘要 IV
Abstract VI
謝誌 VIII
目錄 IX
圖目錄 XIII
表目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 6
第二章 文獻回顧 9
2-1 高溫質子交換膜燃料電池介紹 9
2-2質子交換膜的質子傳遞機制 12
2-3高溫質子交換膜的發展 13
2-4 PBI系列薄膜的探討 14
2-4-1 修飾之PBI質子交換薄膜 16
2-4-2 PBI/無機物質子交換薄膜 18
2-4-3 PBI/離子液體質子交換薄膜 24
2-4-4 PBI基材與高分子混合之質子交換薄膜 27
2-4-5 聚(2,5-苯並咪唑)(ABPBI) 28
2-5 非PBI系列的質子交換薄膜 37
2-5-1 碳氫(芳香環)高分子 38
2-5-2 有機/無機複合薄膜 46
第三章 實驗方法與原理 56
3-1 實驗儀器及技術原理 56
3-1-1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 56
3-1-2 穿透式電子顯微鏡(Tunneling Electron Microscopy, TEM) 56
3-1-3 X光繞射儀(X-Ray Diffraction, XRD) 57
3-1-4 拉曼光譜儀(Raman Spectrometer) 58
3-1-5 熱重分析儀 (Thermal Gravimetric Analysis, TGA) 59
3-1-6傅立葉紅外線光譜儀(Infrared Spectroscopy, FTIR) 60
3-1-7薄膜摻雜程度 (PA Doping level) 與膨潤 (Swelling) 60
3-1-8複合薄膜機械強度測試 61
3-1-9化學穩定性測試(Fenton’s test) 62
3-1-10質子導電度測量 62
3-2 物質合成及薄膜製備 63
3-2-1聚2,5-苯並咪唑(ABPBI) 樣品製備 63
3-2-2 Graphene Oxide(GO)樣品製備 63
3-2-3 Functionalized Graphene Oxide(F-GO)樣品製備 64
3-2-4有機/無機複合膜之製備製備 65
3-3 實驗藥品及儀器設備 66
3-4 樣品命名規則 67
第四章 結果與討論 68
4-1薄膜材料的性質分析 69
4-1-1聚2,5-苯並咪唑(ABPBI)分子量鑑定 69
4-1-2聚2,5-苯並咪唑(ABPBI) FTIR結構鑑定 71
4-1-3官能基化氧化石墨烯FTIR合成鑑定 72
4-1-4官能基化氧化石墨烯XRD結構鑑定 74
4-1-5官能基化氧化石墨烯TEM影像 75
4-1-6官能基化氧化石墨烯拉曼光譜鑑定 76
4-2官能基化的氧化石墨烯與ABPBI複合薄膜的效能測試 77
4-2-1複合薄膜磷酸摻雜量(Dopping level)與膨潤率 77
4-2-2複合薄膜SEM影像 79
4-2-3複合薄膜質子導電度測試 80
4-2-4複合薄膜磷酸保留能力 82
4-2-5化學穩定性測試 83
4-2-6熱穩定性分析 84
4-2-7複合薄膜機械效能測試 86
4-2-8外加電場誘導高分子複合薄膜導電度測試 88
第五章 結論與未來展望 91
5-1 結論 91
5-2 未來展望與研究建議 93
第六章 參考文獻 95
參考文獻 [1] 黃靖穎、劉政宏和王文琳,高溫型質子交換膜燃料電池與雙極板之高溫化學穩定驗證技術,臺灣能源期刊,第二卷,第一期,第39-52頁,民國104年3月。
[2] 石蕙菱,全球燃料電池技術與廠商發展趨勢,工業材料雜誌,第397期,141-147頁,2020年1月。
[3] 劉政宏、王文琳、藍兆禾和曹芳海,高溫質子交換膜燃料電池雙極板之技術發展(上),工業材料雜誌,能源/儲能專欄,164-169頁,2013年10月。
[4] http://www.ele.energy.dtu.dk/Research/Fuel-cells.aspx
[5] S. Authayanun, K. Im-orb, A. Arpornwichanop, “A review of the development of high temperature proton exchange membrane fuel cells’’, Chinese Journal of Catalysis, 36, pp. 473-483, 2015.
[6] S. Bosea, T. Kuilaa, T. Nguyenb, N. Kimc, K. Laua, J. Leea, “Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges’’, Progress in Polymer Science, 36, pp. 813-843, 2011.
[7] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, “Review of the proton exchange membranes for fuel cell applications’’, International journal of hydrogen energy, 35, pp. 9349-9384, 2010.
[8] 吳魁、解東來,高溫質子交換膜研究進展,化工進展,第31卷第10期,2202-2206頁,2012年。
[9] H. Junoh, J. Jaafar, N. Nordin, A. Ismail, M Othman, M. Rahman, F. Aziz, N. Yusof, W. Salleh, “Porous Proton Exchange Membrane Based Zeolitic Imidazolate Framework-8’’, Journal of Membrane Science and Research, 5, pp. 65-75, 2019.
[10] L. Jheng, W. Chang, S. Hsu a, P. Cheng, “Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells’’, Journal of Power Sources, 323, pp. 57-66, 2016.
[11] R. He, Q. Li, J. Jensen, N. BJERRUM, “Doping Phosphoric Acid in Polybenzimidazole Membranes for High Temperature Proton Exchange Membrane Fuel Cells’’, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 45, pp. 2989-2997, 2007.
[12] J. Walkowiak-Kulikowska, J. Wolska, H. Koroniak1, “Polymers application in proton exchange membranes for fuel cells (PEMFCs)’’ Physical Sciences Reviews, pp. 2017-0018, 2017.
[13] 李英、張香平,用於高溫質子交換膜燃料電池的聚合物電解質膜研究進展,化工進展,第37卷第9期,2018年。
[14] 徐帆、範晨亮、徐宏杰、郭曉霞、房建華,用於高溫質子交換膜燃料電池的聚合物電解質膜研究進展,化工新型材料,第40卷第12期,2012年12月。
[15] 林海丹,高溫質子交換膜燃料電池用聚合物膜材料研究進展,化工新型材料,第45卷第4期,2017年4月。
[16] X. Li, H. Ma, P. Wang, Z. Liu, J. Peng, W. Hu, Z. Jiang, B. Liu, “Construction of High-Performance, High-Temperature Proton Exchange Membranes through Incorporating SiO2 Nanoparticles into Novel Cross-linked Polybenzimidazole Networks’’, ACS Appl. Mater. Interfaces, 11, pp.30735-30746, 2019.
[17] C. Xue, J. Zou, Z. Sun, F. Wang, K. Han, H. Zhu, “Graphite oxide/functionalized graphene oxide and polybenzimidazole composite membranes for high temperature proton exchange membrane fuel cells’’, International journal of hydrogen energy, pp. 1-9, 2014.
[18] M. Hill, Y. Kim, B. Einsla, J. McGrath, “Zirconium hydrogen phosphate/disulfonated poly(arylene ether sulfone) copolymer composite membranes for proton exchange membrane fuel cells’’, Journal of Membrane Science, 283, pp. 102-108, 2006.
[19] N. Uregen, K. Pehlivanoglu, Y. Ozdemir, Y. Devrim, “Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells’’, International journal of hydrogen energy, pp. 1-12, 2016.
[20] H. Bai, W.S. Ho, “New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells’’, Journal of the Taiwan Institute of Chemical Engineers, 40, pp. 260-267, 2009.
[21] L. Xiao, H. Zhang, T. Jana, E. Scanlon, R. Chen, E.W. Choe, L. S. Ramanathan, S. Yu, B. C. Benicewicz, “Synthesis and Characterization of Pyridine‐Based Polybenzimidazoles for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications’’, Fuel Cells, 5, pp. 287-295, 2005.
[22] S. Chuang, S Hsu, M Yang, “Preparation and characterization of fluorine-containing polybenzimidazole/imidazole hybrid membranes for proton exchange membrane fuel cells’’, European Polymer Journal, 44, pp. 2202-2206, 2008.
[23] S. Wang, G. Zhang, M. Han, H. Li, Y. Zhang, J. Ni, W. Ma, M. Li, J. Wang, Z. Liu, L. Zhang, H. Na, “Novel epoxy-based cross-linked polybenzimidazole for high temperature proton exchange membrane fuel cells’’, International journal of hydrogen energy, 36, pp. 8412-8421, 2011.
[24] S. Bhadra, N Kimb, J Choib, K Rheec, J Lee, “Hyperbranched poly(benzimidazole-co-benzene) with honeycomb structure as a membrane for high-temperature proton-exchange membrane fuel cells’’, Journal of Power Sources, 195, 2470-2477, 2010.
[25] 浦鴻汀、侯繼斅、楊正龍,有機/無機奈米複合質子交換膜的研究進展,材料科學與工程學報,第23卷第1期,2005年。
[26] F. Pinar, P. Canizares, M. Rodrigo, D. Ubeda, J. Lobato, “Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount’’, RSC Advances, 2, pp. 1547-1556, 2012.
[27] G. Nawn, G. Pace, S. Lavina, K. Vezz, E. Negro, F. Bertasi, S. Polizzi, V. Noto, “Nanocomposite Membranes based on Polybenzimidazole and ZrO2 for High-Temperature Proton Exchange Membrane Fuel Cells’’, ChemSusChem, 8, pp. 1381-1393, 2015.
[28] F. Liu, S. Wanga, J. Lib, X. Tiana, X. Wanga, H. Chena, Z. Wanga, “Polybenzimidazole/ionic-liquid-functional silica composite membranes with improved proton conductivity for high temperature proton exchange membrane fuel cells’’, Journal of Membrane Science, 541, pp. 492-499, 2017.
[29] Q. Zhang, H. Liu, X. Li, R. Xu, J. Zhong, R. Chen, X. Gu, “Synthesis and Characterization of Polybenzimidazole/α-Zirconium Phosphate Composites as Proton Exchange Membrane’’, Polymer Engineering and Science, pp. 622-628, 2016.
[30] Y. Cai, Z. Yue, S. Xu, “A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere’’, J. APPL. POLYM. SCI, 134, 44986, 2017.
[31] 張敏超,離子液體的特性及其在化學上的應用,工業材料雜誌,325期,77-83頁,2014年1月。
[32] A. Eguizábal, J. Lemus, M. Pina, “On the incorporation of protic ionic liquids imbibed in large pore zeolites to polybenzimidazole membranes for high temperature proton exchange membrane fuel cells’’, Journal of Power Sources, 222, pp. 483-492, 2013.
[33] E. Ven, A. Chairuna, G. Merle, S. Benito, Z Borneman, K. Nijmeijer, “Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications’’, Journal of Power Sources, 222, pp. 202-209, 2013.
[34] S. Maity, S. Singha, T. Jana, “Low acid leaching PEM for fuel cell based on polybenzimidazole nanocomposites with protic ionic liquid modified silica’’, Polymer, 66, pp. 76-85, 2015.
[35] 何曉燕、徐曉君、周文瑞、楊武,聚離子液體的合成及應用,高分子通報,第5期,17頁-28頁,2013年5月。
[36] M. Li, L. Yang, S. Fang, S. Dong, “Novel polymeric ionic liquid membranes as solid polymer electrolytes with high ionic conductivity at moderate temperature’’, Journal of Membrane Science, 366, pp. 245-250, 2011.
[37] A. Rewar, H. Chaudhari, R. Illathvalappil, K. Sreekumar, U. Kharul, “New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties’’, J. Mater. Chem. A, 2, pp. 14449-14458, 2014.
[38] F. Liu, S. Wang, H. Chen, J. Li, X. Tian, X. Wang, T. Mao, J. Xu, Z. Wang, “Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs’’, ACS Sustainable Chem. Eng, 6, pp. 16352-16362, 2018.
[39] K. Suzuki, Y. Iizuka, M. Tanaka, H. Kawakami, “Phosphoric acid-doped sulfonated polyimide and polybenzimidazole blend membranes: high proton transport at wide temperatures under low humidity conditions due to new proton transport pathways’’, J. Mater. Chem, 22, pp. 23767-23772, 2012.
[40] V. Deimede, G. A. Voyiatzis, J. K. Kallitsis, L. Qingfeng, N. J. Bjerrum, “Miscibility Behavior of Polybenzimidazole/Sulfonated Polysulfone Blends for Use in Fuel Cell Applications’’ Macromolecules, 33, pp. 7609-7617, 2000.
[41] H. Zhang, X. Li, C. Zhaoa, T. Fua, Y. Shi, H. Na, “Composite membranes based on highly sulfonated PEEK and PBI:Morphology characteristics and performance’’, Journal of Membrane Science, 308, pp. 66-74, 2008.
[42] X. Zhang, Q. Liua, L. Xia, D. Huanga, X. Fu, R Zhang, S Hu, F. Zhao, X. Li, X. Bao, “Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range’’, Journal of Membrane Science, 574, pp. 282-298, 2019.
[43] H. D. Chaudhari, R. Illathvalappil, S. Kurungot, U. K. Kharula, “Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method’’, Journal of Membrane Science, 564, 211-217, 2018.
[44] R. Rath, P. Kumar, L. Unnikrishnan, S. Mohanty , S. K. Nayak, “Current Scenario of Poly (2,5-Benzimidazole)(ABPBI) as Prospective PEM for Application in HT-PEMFC’’, Journal Polymer Reviews, 60, 2020.
[45] J. A. Asensio, Sa. Borros, P. Gomez-Romero, “Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly„2,5-benzimidazole… Membranes’’, Journal of The Electrochemical Society, 151, pp. A304-A310, 2004.
[46] H. Zheng, H. Luo, M. Mathe, “Proton exchange membranes based on poly(2,5-benzimidazole) and sulfonated poly(ether ether ketone) for fuel cells’’, Journal of Power Sources, 208, pp.176-179, 2012.
[47] U. Sen, H. Usta, O. Acar, M. Citir, A. Canlier, A. Bozkurt, A. Ata, “Enhancement of Anhydrous Proton Conductivity of Poly(vinylphosphonic acid)–Poly(2,5-benzimidazole) Membranes via In Situ Polymerization’’, Macromol. Chem. Phys, 216, pp. 106-112, 2015.
[48] R. Carrillo, J. Suarez-Guevara, L. Torres-González, P. Gómez-Romero, E. M. Sánchez, “Incorporation of benzimidazolium ionic liquid in proton exchange membranes ABPBI-H3PO4’’, Journal of Molecular Liquids, 181, pp. 115-120, 2013.
[49] X. Bao, F. Zhang, Q. Liu, “Sulfonated poly(2,5-benzimidazole) (ABPBI)/ MMT/ionic liquids composite membranes for high temperature PEM applications’’, International journal of hydrogen energy, pp. 1-8, 2015.
[50] F. Zhang, X. Bao, Q. Liu, M. Huang, “High Temperature Polymer Electrolyte Membranes Based on Poly(2,5-benzimidazole) (ABPBI) and POSS Incorporated Ionic Liquid’’, J. Mater. Chem. Eng, 2, pp. 86-93, 2014.
[51] Q. Yuan, G. Sun, K. Han, J. Yu, H. Zhu, Z. Wang, “Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability’’, European Polymer Journal, 85, pp. 175-186, 2016.
[52] Q. Li, C. Pan, J. O. Jensen, P. Noyé, N. J. Bjerrum, “Cross-linked polybenzimidazole membranes for fuel cells’’, Chem. Mater. 19, pp. 350-352, 2007.
[53] H. Xu, K. Chen, X. Guo, J. Fang, J. Yin, “Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application’’, Polymer, 48, pp. 5556-5564, 2007.
[54] S. Kima, T. Kim, T. Koa, J. Lee, “Cross-linked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications’’, Journal of Membrane Science, 373, pp. 80-88, 2011.
[55] A. Kim, M. Vinothkannan, D. Yoo, “Artificially designed, low humidifying organic–inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells’’, Compos. Pt. B-Eng, 130, pp. 103-118, 2017.
[56] P. Gomez-Romeroa, J. Asensio, S. Borros, “Hybrid proton-conducting membranes for polymer electrolyte fuel cells Phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40)’’, Electrochimica Acta, 50, pp. 4715-4720, 2005.
[57] S. Wang, F. Dong, Z. Li, “Proton-conducting membrane preparation based on SiO2-riveted phosphotungstic acid and poly (2,5-benzimidazole) via direct casting method and its durability’’, J Mater Sci, 47, pp. 4743-4749, 2012.
[58] T. Kim, T. Lim, Y. Park, K. Shin, J. Lee, “Proton-Conducting Zirconium Pyrophosphate/Poly(2,5-benzimidazole) Composite Membranes Prepared by a PPA Direct Casting Method’’, Macromol. Chem. Phys, 208, pp. 2293-2302, 2007.
[59] H. Zheng, M. Mathe, “Enhanced conductivity and stability of composite membranes based on poly(2,5-benzimidazole) and zirconium oxide nanoparticles for fuel cells’’, Journal of Power Sources, 196, pp. 894-898, 2011.
[60] Q. Chea, R. He, J. Yang, L. Feng, R. Savinell, “Phosphoric acid doped high temperature proton exchange membranes based on sulfonated polyetheretherketone incorporated with ionic liquids’’, Electrochemistry Communications, 12, pp. 647-649, 2010.
[61] K. Seo, J. Seo, K. Nam, H. Han, “Polybenzimidazole/Inorganic Composite Membrane With Advanced Performance for High Temperature Polymer Electrolyte Membrane Fuel Cells’’, Polym. Compos. 38, pp. 87-95, 2017.
[62] W. Wu, G. Zou, X. Fang, C. Cong, Q. Zhou, “Effect of Methylimidazole Groups on the Performance of Poly(phenylene oxide) Based Membrane for High-Temperature Proton Exchange Membrane Fuel Cells’’, Ind. Eng. Chem. Res, 56, 37, pp. 10227-10234, 2017.
[63] F. Bu, Y. Zhang, L. Hong, W. Zhao, D. Li, J. Lia, H. Na, C Zhao, “1,2,4-Triazole functionalized poly(arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability’’, Journal of Membrane Science, 545, pp. 167-175, 2018.
[64] J. Pan, B. Wu, L. Wu, Y. He, J. Miao, L. Ge, T. Xu, “Proton exchange membrane from tetrazole-based poly (phthalazinone ether sulfone ketone) for high-temperature fuel cells’’, International journal of hydrogen energy, pp. 1-10, 2016.
[65] K. Wang, L. Yang, W. Wei, L. Zhang, G. Chang, “Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications”, Journal of Membrane Science, 549, 23-27, 2018.
[66] M. Du, L. Yang, X. Luo, K. Wang, G. Chang, “Novel phosphoric acid (PA)-poly(ether ketone sulfone) with flexible benzotriazole side chains for high-temperature proton exchange membranes’’, Polym. J, pp. 69-75, 2018.
[67] J. Jang, D. Kim, M. Ahn, C. Min, S. Lee, J. Byun, C. Pak, J. Lee, “Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells’’, Journal of Membrane Science, 595, pp. 117508, 2020.
[68] Q. Che, H. Fan, X. Duan, F. Feng, W. Mao, X. Han, “Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers”, Journal of Molecular Liquids, 269, pp. 666-674, 2018.
[69] S. Awasthi, V. Kiran, B. Gaur, “Influence of hydrophobic block length and ionic liquid on the performance of multiblock poly(arylene ether) proton exchange membrane’’, International journal of hydrogen energy, pp. 1-14, 2017.
[70] S. Rao, V. Hande, S. Sawant, S. Praveen, S. Rath, K. Sudarshan, D. Ratna, M. Patri, “α-ZrP Nanoreinforcement Overcomes the Trade-Off between Phosphoric Acid Dopability and Thermomechanical Properties:Nanocomposite HTPEM with Stable Fuel Cell Performance’’, ACS Appl. Mater. Interfaces, 11, pp. 37013-37025, 2019.
[71] V. Shahi, “Highly charged proton-exchange membrane: Sulfonated poly(ether sulfone)-silica polyelectrolyte composite membranes for fuel cells”, Solid State Ionics, 177, pp. 3395-3404, 2007.
[72] 莊謝奇勳,sPSU/PEI及官能基化ZrP-SH複合性材料之中高溫質子交換薄膜,國立中央大學,碩士論文,民國108年。
[73] V. Elumalai, T. Ganesh, C. Selvakumar, D. Sangeetha, “Phosphonate ionic liquid immobilised SBA-15/SPEEK composite membranes for high temperature proton exchange membrane fuel cells”, Materials Science for Energy Technologies, 1, pp. 196-204, 2018.
[74] J. Lia, S. Wang, J. Xu, L. Xu, F. Liu, Xue. Tian, Zhe. Wang, “Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells”, Journal of Membrane Science, 529, pp. 243-251, 2017.
[75] J. Zhang, S. Lu, H. Zhu, K. Chen, Y. Xiang, J. Liu, M. Forsyth, S. Jiang, “Amino-functionalized mesoporous silica based polyethersulfone–polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells”, RSC Adv, 6, pp. 86575-86585, 2016.
[76] A. Aslan, A. Bozkurt, “Nanocomposite polymer electrolyte membranes based on poly(vinylphosphonic acid)/sulfated nano-titania”, Journal of Power Sources, 217, pp. 158-163, 2012.
[77] N. Anahidzade, A. Abdolmaleki, M. Dinari, K. Tadavani, M. Zhiani, “Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells’’, Journal of Membrane Science, 565, pp. 281-292, 2018.
[78] G. Zou, W. Wu, C. Cong, X. Meng, K. Zhao, Q. Zhou, “Improved performance of poly(vinyl pyrrolidone)/phosphonated poly(2,6-dimethyl-1,4-phenyleneoxide)/graphitic carbon nitride nanocomposite membranes for high temperature proton exchange membrane fuel cells”, RSC Adv, 6, pp. 106237-106247, 2016.
[79] https://commons.wikimedia.org/wiki/File:Bragg%27s_Law.PNG
[80] https://en.wikipedia.org/wiki/Stress%E2%80%93strain_curve
[81] X. Qiu, M. Ueda, H. Hu, Y. Sui, X. Zhang, L. Wang, “Poly(2,5-benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane”, ACS Appl. Mater. Interfaces, 9, pp. 33049-33058, 2017.
[82] Y. Chiang, D. Tsai, Y. Liu, C. Chiang, “PEM fuel cells of poly(2,5-benzimidazole) ABPBI membrane electrolytes doped with phosphoric acid and metal phosphates”, Materials Chemistry and Physics, 216, pp. 485-490, 2018.
[83] A. Jabbar, G. Yasin, W. Khan, M. Anwar, R. Korai, M, Nizam, G. Muhyodin, “Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance”, RSC Adv, 7, pp. 31100-31109, 2017.
[84] Y. He, C. Tong, L. Geng, L. Liu, C. Lü, “Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide:Size effect of graphene oxide’’, Journal of Membrane Science, 458, pp. 36-46, 2014.
[85] A. Das, P. Ghosh, S. Ganguly, D. Banerjee, K. Kargupta, “Salt-leaching technique for the synthesis of porous poly(2,5-benzimidazole) (ABPBI) membranes for fuel cell application”, J. APPL. POLYM. SCI, 45773, 2017.
[86] U.R. Farooqui, A.L. Ahmad, N.A. Hamid, “Graphene oxide: A promising membrane material for fuel cells”, Renewable and Sustainable Energy Reviews, 82, pp. 714-733, 2018.
[87] 方昱馨,電場誘導聚苯醚碸摻雜複合薄膜之研究,國立中央大學,碩士論文,民國105年。
指導教授 諸柏仁 審核日期 2020-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明