博碩士論文 107324047 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:155 、訪客IP:18.219.142.90
姓名 鄔子平(Tzu-Ping Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 有機金屬框架/聚醯亞胺介面之分子動力學模擬氣體輸送行為
(Molecular Dynamics Simulation of Gas Transport Behavior in Metal-Organic Framework/Polyimide Interface)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 由於近年來溫室效應嚴重影響環境,使對於二氧化碳及其他氣體
分離純化及儲存有高度的關注。為了分離工業廢氣,薄膜常被作為眾
多分離材料之一,其中混合基材薄膜(mixed matrix membranes, MMMs)為研究主要重點。然而,填料與高分子基材的交互作用相對複雜,常見問題如非選擇性孔洞產生、高分子包覆性及填料吸附能力等。
透過分子動力學(molecular dynamics, MD)計算,我們建構不同重
量百分比填料的混和基材薄膜,並且測試薄膜的氣體滲透能力。本研
究使用聚醯亞胺(6FDA-DAM)為基材,並使用有機金屬框架(UiO-66)
為填料以建構混合系統模型。其中,密度泛函理論(Density functional theory, DFT)用於有機金屬框架結構優化計算,優化後的UiO-66 結構分別以四面體結構(tetrahedral cage)和八面體結構(octahedral cage)等二級建構單元(second building units)為填料進行探討;系統性分子動力學(31-steps)用於建構混合基材薄膜系統。本研究以蒙地卡羅法(Monte Carlo method, MC)及氣體分子動力學計算分別探討薄膜氣體溶解性(solubility)和擴散(diffusivity),同時四面體結構及八面體結構吸附性影響也進行探討。
最後,實驗結果發現隨著填料比例增加,氣體溶解性和擴散性有顯著增強效果。但相對受到高分子包覆、氣體極性和大小、框架種類吸附強度不同,造成排序呈現非線性關係。
摘要(英) In order to separate industrial waste gas, artificial membranes are utilized to provide a barrier. The greenhouse effect has affected the environment seriously, leading to increased attention on CO2 and other gas
purification and storage. Among the various film constructs for gas purification, the mixed matrix membranes (MMMs) have been researched. However, the interaction between fillers and polymers are complicated in such a construction, including the formation of nonselective voids, polymer wrapping, and the fillers adsorption ability.
Through molecular dynamics (MD) simulation, we modified the MMM structures with different filler loading and tested the gas permeability. In this research, we constructed the polyimide (6FDA-DAM) and added MOF (UiO-66) as the filler to build the hybrid MMM systems. Density functional theory (DFT) calculation and molecular dynamics
routines were used in building MOF and MMM structures. The optimized UiO-66 structure was divided into two significant features which are the tetrahedral cages and the octahedral cages. We tested gas transport performance of MMM by using the grand canonical Monte Carlo (GCMC)
method and the gas molecular dynamics calculations, and the effect of the tetrahedral and octahedral cages are discussed.
Finally, the experimental results show that the gas solubility and diffusivity are increased with the increasing proportion of fillers, and have
a significant enhancement effect. However, due to polymer wrapping, gas polarity and size, tetrahedral and octahedral cages adsorption ability are different, resulting in non-linear relationship.
關鍵字(中) ★ 分子動力學
★ 聚醯亞胺
★ 有機金屬框架
★ 混合基材薄膜
關鍵字(英) ★ molecular dynamics simulation
★ polyimide
★ metal-organic frameworks
★ mixed matrix membranes
論文目次 摘要................................................... ii
Abstract............................................... iv
Acknowledgment......................................... vi
List of figures........................................ ix
List of tables........................................ xii
1. Background........................................... 1
1.1 Introduction........................................ 1
1.2 Literature review................................... 4
1.2.1 Polymer model construction ....................... 4
1.2.2 UiO-66 structure feature and simulation........... 5
1.2.3 Mixed-matrix membrane model simulation ........... 9
1.2.4 Force field and Charges ......................... 14
1.3 Motivation ........................................ 18
2. Theory ............................................. 19
2.1 Molecular dynamics simulations .................... 19
2.2 Force field ....................................... 22
2.3 Monte Carlo methods ............................... 23
2.4 Solubility of dual-mode model ..................... 26
2.5 Diffusivity ....................................... 27
2.6 Permeability ...................................... 28
3. Simulation method .................................. 30
3.1 Construction of polymer matrix model .............. 30
3.2 Calculation of UiO-66 bulk structure and cluster .. 33
3.3 Construction of mixed matrix membrane model........ 33
3.4 Structural membrane properties analysis............ 34
3.5 Adsorption simulation and solubility of membranes.. 35
3.6 Diffusivity of membrane ........................... 37
4. Result and discussion .............................. 38
4.1 Model of UiO-66 tetrahedral and octahedral cages .. 38
4.2 Characterization of 6FDA-DAM/UiO-66 membrane models.39
4.3 Adsorption isotherm and solubility of 6FDA-DAM/UiO-66 membranes ..............................................44
4.4 Diffusivities of 6FDA-DAM/UiO-66 membranes......... 55
4.5 Gas permeability and selectivity of 6FDA-DAM/UiO-66 membranes ............................................. 58
5. Conclusion ......................................... 62
6. Future works ....................................... 63
Reference ............................................. 64
Appendix ........................................... - 1 -
參考文獻 1. J. Dechnik, C.J. Sumby, and C. Janiak, Enhancing Mixed-Matrix Membrane Performance with Metal–Organic Framework Additives. Crystal Growth & Design, 2017. 17(8): p. 4467-4488.
2. L.M. Robeson, The upper bound revisited. Journal of Membrane Science, 2008. 320(1-2): p. 390-400.
3. H. Furukawa, K.E. Cordova, M. O′keeffe, and O.M. Yaghi, The chemistry and applications of metal-organic frameworks. Science, 2013. 341(6149): p. 1230444.
4. M.Z. Ahmad, M. Navarro, M. Lhotka, B. Zornoza, C. Téllez, W.M. De Vos, N.E. Benes, N.M. Konnertz, T. Visser, R. Semino, G. Maurin, V. Fila, and J. Coronas,
Enhanced gas separation performance of 6FDA-DAM based mixed matrix membranes by incorporating MOF UiO-66 and its derivatives. Journal of Membrane Science, 2018. 558: p. 64-77.
5. D.H. Matthias Heuchel, Pluton Pullumbi, Molecular Modeling of Small-Molecule Permeation in Polyimides and Its Correlation to Free-Volume Distributions. Macromolecules 2004, 37, 201-214, 2004. 37, 201-214.
6. N. Tien-Binh, H. Vinh-Thang, X.Y. Chen, D. Rodrigue, and S. Kaliaguine, Polymer functionalization to enhance interface quality of mixed matrix membranes for high CO2/CH4 gas separation. Journal of Materials Chemistry A, 2015. 3(29): p.15202-15213.
7. S.M. Rogge, J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, and V. Van Speybroeck, Thermodynamic Insight in the High-Pressure
Behavior of UiO-66: Effect of Linker Defects and Linker Expansion. Chem Mater, 2016. 28(16): p. 5721-5732.
8. R.C. Dutta and S.K. Bhatia, Transport Diffusion of Light Gases in Polyethylene Using Atomistic Simulations. Langmuir, 2017. 33(4): p. 936-946.
9. K.-L. Tung and K.-T. Lu, Effect of tacticity of PMMA on gas transport through membranes: MD and MC simulation studies. Journal of Membrane Science, 2006.272(1-2): p. 37-49.
10. S. Neyertz and D. Brown, Nanosecond-time-scale reversibility of dilation induced by carbon dioxide sorption in glassy polymer membranes. Journal of Membrane Science, 2016. 520: p. 385-399.
11. S. Velioğlu, M.G. Ahunbay, and S.B. Tantekin-Ersolmaz, Investigation of CO2-induced plasticization in fluorinated polyimide membranes via molecular simulation. Journal of Membrane Science, 2012. 417-418: p. 217-227.65
12. G.S. Larsen, P. Lin, K.E. Hart, and C.M. Colina, Molecular Simulations of PIM-1-like Polymers of Intrinsic Microporosity. Macromolecules, 2011. 44(17): p. 6944-6951.
13. N.B. Mckeown and P.M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage.
Chemical Society Reviews, 2006. 35(8): p. 675-683.
14. R. Semino, N.A. Ramsahye, A. Ghoufi, and G. Maurin, Microscopic Model of the Metal-Organic Framework/Polymer Interface: A First Step toward Understanding the
Compatibility in Mixed Matrix Membranes. ACS Appl Mater Interfaces, 2016. 8(1): p.809-19.
15. J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P.Lillerud, A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
16. N.A. Ramsahye, J. Gao, H. Jobic, P.L. Llewellyn, Q. Yang, A.D. Wiersum, M.M. Koza, V. Guillerm, C. Serre, C.L. Zhong, and G. Maurin, Adsorption and Diffusion of Light
Hydrocarbons in UiO-66(Zr): A Combination of Experimental and Modeling Tools. The Journal of Physical Chemistry C, 2014. 118(47): p. 27470-27482.
17. Z. Hu, Y. Peng, Z. Kang, Y. Qian, and D. Zhao, A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg Chem, 2015. 54(10): p.4862-8.
18. M.R. Destefano, T. Islamoglu, S.J. Garibay, J.T. Hupp, and O.K. Farha, Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites. Chemistry of Materials, 2017. 29(3): p. 1357-1361.
19. L.B. Vilhelmsen and D.S. Sholl, Thermodynamics of Pore Filling Metal Clusters in Metal Organic Frameworks: Pd in UiO-66. J Phys Chem Lett, 2012. 3(24): p. 3702-6.
20. B. Ghalei, K. Wakimoto, C.Y. Wu, A.P. Isfahani, T. Yamamoto, K. Sakurai, M. Higuchi, B.K. Chang, S. Kitagawa, and E. Sivaniah, Rational Tuning of Zirconium Metal-Organic Framework Membranes for Hydrogen Purification. Angew Chem Int Ed Engl, 2019. 58(52): p. 19034-19040.
21. L. Zhang, Z. Hu, and J. Jiang, Metal–Organic Framework/Polymer Mixed-Matrix Membranes for H2/CO2 Separation: A Fully Atomistic Simulation Study. The Journal of Physical Chemistry C, 2012. 116(36): p. 19268-19277.
22. J.D. Evans, D.M. Huang, M.R. Hill, C.J. Sumby, A.W. Thornton, and C.J. Doonan, Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous Organic
Cages. The Journal of Physical Chemistry C, 2014. 118(3): p. 1523-1529.
23. S. Velioglu and S. Keskin, Simulation of H2/CH4 mixture permeation through MOF membranes using non-equilibrium molecular dynamics. J Mater Chem A Mater, 2019.7(5): p. 2301-2314.
24. C. Wang, P. Jagirdar, S. Naserifar, and M. Sahimi, Molecular Simulation Study of Gas
Solubility and Diffusion in a Polymer-Boron Nitride Nanotube Composite. J Phys Chem B, 2016. 120(7): p. 1273-84.
25. M. Dehghani, M. Asghari, A.H. Mohammadi, and M. Mokhtari, Molecular simulation and Monte Carlo study of structural-transport-properties of PEBA-MFI zeolite mixed
matrix membranes for CO2 , CH4 and N2 separation. Computers & Chemical Engineering, 2017. 103: p. 12-22.
26. B. Ghalei, K. Sakurai, Y. Kinoshita, K. Wakimoto, Ali p. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, and E. Sivaniah, Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy, 2017. 2(7).
27. R.C. Dutta and S.K. Bhatia, Structure and Gas Transport at the Polymer-Zeolite Interface: Insights from Molecular Dynamics Simulations. ACS Appl Mater Interfaces,
2018. 10(6): p. 5992-6005.
28. A.K. Rappé, C.J. Casewit, K. Colwell, W.A. Goddard Iii, and W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics
simulations. Journal of the American chemical society, 1992. 114(25): p.10024-10035.
29. J.I.S. Jeffrey J. Potoff, Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen. AIChE Journal, 2001. 47.
30. H. Sun, COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationssOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 1998, 102, 7338-7364, 1998.
31. A.K. Rappe and W.A. Goddard Iii, Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 1991. 95(8): p. 3358-3363.
32. B.A. Wells, C. De Bruin-Dickason, and A.L. Chaffee, Charge Equilibration Based on Atomic Ionization in Metal–Organic Frameworks. The Journal of Physical Chemistry
C, 2014. 119(1): p. 456-466.
33. L. Li, T. Zhang, Y. Duan, Y. Wei, C. Dong, L. Ding, Z. Qiao, and H. Wang, Selective gas diffusion in two-dimensional MXene lamellar membranes: insights from molecular dynamics simulations. Journal of Materials Chemistry A, 2018. 6(25): p. 11734-11742.
34. L. Verlet, Computer" experiments" on classical fluids. I. Thermodynamical properties
of Lennard-Jones molecules. Physical review, 1967. 159(1): p.98.
35. M.P. Allen and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press.
36. H. Lorentz, Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der physik, 1881. 248(1): p. 127-136.
37. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, Equation of state calculations by fast computing machines. The journal of chemical physics, 1953. 21(6): p. 1087-1092.
38. W. Koros, D.R. Paul, and A. Rocha, Carbon dioxide sorption and transport in polycarbonate. Journal of Polymer Science: Polymer Physics Edition, 1976. 14(4): p.
687-702.
39. R. Barrer, J. Barrie, and J. Slater, Sorption and diffusion in ethyl cellulose. Part III.
Comparison between ethyl cellulose and rubber. Journal of Polymer Science, 1958.27(115): p. 177-197.
40. D. Paul, Gas sorption and transport in glassy polymers. Berichte der Bunsengesellschaft für physikalische Chemie, 1979. 83(4): p. 294-302.
41. S. Kanehashi and K. Nagai, Analysis of dual-mode model parameters for gas sorption in glassy polymers. Journal of Membrane Science, 2005. 253(1-2): p. 117-138.
42. D.S. Biovia, BIOVIA materials studio. San Diego, CA, 2016.
43. I. Stewart J. Clark*, Matthew D. Segallii, Chris J. Pickardii, Phil J. Hasnipiii, Matt I. J. Probertiv, Keith Refsonv and Mike C. Payneii, First principles methods using CASTEP. Z. Kristallogr. 220 (2005) 567–570.
44. Y.-R. Chen, L.-H. Chen, K.-S. Chang, T.-H. Chen, Y.-F. Lin, and K.-L. Tung, Structural characteristics and transport behavior of triptycene-based PIMs membranes: A combination study using ab initio calculation and molecular simulations. Journal of Membrane Science, 2016. 514: p. 114-124.
45. W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys Rev A Gen Phys, 1985. 31(3): p. 1695-1697.
46. J.P.M.P. H. J. C. Berendsen, W. F. Van Gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684 (1984), 1984.
47. C.A. Trickett, K.J. Gagnon, S. Lee, F. Gandara, H.B. Burgi, and O.M. Yaghi, Definitive molecular level characterization of defects in UiO-66 crystals. Angew Chem Int Ed Engl, 2015. 54(38): p. 11162-7.
48. J. Hajek, M. Vandichel, B. Van De Voorde, B. Bueken, D. De Vos, M. Waroquier, and V. Van Speybroeck, Mechanistic studies of aldol condensations in UiO-66 and
UiO-66-NH2 metal organic frameworks. Journal of Catalysis, 2015. 331: p. 1-12.
49. M.L. Connolly, Analytical Molecular Surface Calculation. J. Appl. Cryst.(1983).16.548.558, 1983.
50. J.I.S. Marcus G. Martin, Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B 1998, 102, 2569-2577, 1998.
51. D. Frenkel and B. Smit, Understanding molecular simulation: from algorithms to applications. Vol. 1. 2001: Elsevier.
52. A. Einstein, On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Annalen der physik, 1905. 17(549-560): p. 208.
53. T. Li, D.O. Kildsig, and K. Park, Computer simulation of molecular diffusion in amorphous polymers. Journal of controlled release, 1997. 48(1): p. 57-66.
54. K. Hendrickx, D.E. Vanpoucke, K. Leus, K. Lejaeghere, A. Van Yperen-De Deyne, V. Van Speybroeck, P. Van Der Voort, and K. Hemelsoet, Understanding Intrinsic Light
Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorg Chem, 2015. 54(22): p. 10701-10.
55. S.A. Moggach, T.D. Bennett, and A.K. Cheetham, The effect of pressure on ZIF-8:increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew Chem Int Ed Engl, 2009. 48(38): p. 7087-9.
56. A. Sabetghadam, X. Liu, M. Benzaqui, E. Gkaniatsou, A. Orsi, M.M. Lozinska, C. Sicard, T. Johnson, N. Steunou, P.A. Wright, C. Serre, J. Gascon, and F. Kapteijn,
Influence of Filler Pore Structure and Polymer on the Performance of MOF-Based Mixed-Matrix Membranes for CO2 Capture. Chemistry, 2018. 24(31): p. 7949-7956.
57. H. Mao and S. Zhang, Mixed-matrix membranes incorporated with porous shape-persistent organic cages for gas separation. J Colloid Interface Sci, 2017. 490: p.
29-36.
58. Y. Yang, K. Goh, P. Weerachanchai, and T.-H. Bae, 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward
physical aging. Journal of Membrane Science, 2019. 574: p. 235-242.
59. J.M.L. C.K. Yeom, Y.T. Hong, K.Y. Choi, S.C. Kim, Analysis of permeation transients
of pure gases through dense polymeric membranes measured by a new permeation apparatus. Journal of Membrane Science 2000. 166 (2000) 71–83.
60. S. Pandiyan, D. Brown, S. Neyertz, and N.F.A. Van Der Vegt, Carbon Dioxide Solubility in Three Fluorinated Polyimides Studied by Molecular Dynamics Simulations. Macromolecules, 2010. 43(5): p. 2605-2621.
61. R. Babarao, Z. Hu, J. Jiang, S. Chempath, and S.I. Sandler, Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir, 2007. 23(2): p. 659-666.
62. M.L. Foo, R. Matsuda, Y. Hijikata, R. Krishna, H. Sato, S. Horike, A. Hori, J. Duan, Y. Sato, Y. Kubota, M. Takata, and S. Kitagawa, An Adsorbate Discriminatory Gate
Effect in a Flexible Porous Coordination Polymer for Selective Adsorption of CO2 over C2H2. J Am Chem Soc, 2016. 138(9): p. 3022-30.
63. D. Fairen-Jimenez, R. Galvelis, A. Torrisi, A.D. Gellan, M.T. Wharmby, P.A. Wright, C. Mellot-Draznieks, and T. Duren, Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. Dalton Trans, 2012. 41(35): p. 10752-62.
64. D.S. Sholl, Understanding macroscopic diffusion of adsorbed molecules in crystalline nanoporous materials via atomistic simulations. Accounts of chemical research, 2006. 39(6): p. 403-411.
65. M. Balçık and M.G. Ahunbay, Prediction of CO2-induced plasticization pressure in polyimides via atomistic simulations. Journal of Membrane Science, 2018. 547: p.
146-155.
指導教授 張博凱(Bor Kae Chang) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明