參考文獻 |
中文文獻
1. 王淳禾(2019)。TFT-LCD廠之Array製程區的Stacker Crane Cassette選取與In-Line Stocker出口點選取探討。國立中央大學工業管理研究所碩士發表之論文,桃園市。
2. 阮昱瑋(2019)。TFT-LCD廠之Array製程區的RGV派送控制研究。國立中央大學工業管理研究所碩士發表之論文,桃園市。
3. 林坤濱(2008)。內嵌式自動倉儲(In-line Stocker)於大尺寸面板廠應用之探討–以TFT-LCD公司為例。中央大學工業管理研究所碩士在職專班碩士論文,桃園市。
4. 洪楷力(2020)。以多屬性法則研究TFT-LCD廠的RGV之選取Cassette問題。國立中央大學工業管理研究所碩士未發表之論文,桃園市。
5. 紀碧如(2006)。基因演算法用於增加產能的研究-以TFT-LCD廠Array製程RGV搬送為例。國立交通大學電機資訊學院碩士在職專班碩士論文,新竹市。 取自https://hdl.handle.net/11296/w22y3z
6. 張軒銘(2018)。TFT-LCD廠之自動化搬運系統的多屬性派送控制方法。國立中央大學工業管理研究所碩士論文,桃園市。 取自https://hdl.handle.net/11296/7t7j5v
7. 楊景如(2008)。晶圓廠自動化物料搬運系統之搬運策略模擬研究。國立交通大學工業工程與管理學系博士論文,新竹市。取自https://hdl.handle.net/11296/86d373
8. 劉顥程(2012)。製造系統之無人搬運車的控制問題研究。國立中央大學工業管理研究所博士論文,桃園市。取自https://hdl.handle.net/11296/56cme9
9. 蘇騰昇(2012)。在TFT-LCD廠的設施佈置與自動化物料搬運系統控制之研究。國立中央大學工業管理研究所博士論文,桃園市。取自https://hdl.handle.net/11296/b6yju3
英文文獻
1. Azimi, P., Haleh, H., & Alidoost, M. (2010). The selection of the best control rule for a multiple-load AGV system using simulation and fuzzy MADM in a flexible manufacturing system. Modelling and Simulation in Engineering, 2010, 7.
2. Bilge, Ü., Esenduran, G., Varol, N., Öztürk, Z., Aydın, B., & Alp, A. (2006). Multi-attribute responsive dispatching strategies for automated guided vehicles. International Journal of Production Economics, 100(1), 65-75.
3. Bozer, Y. A., & Eamrungroj, C. (2017). Throughput analysis of multi-device trip-based material handling systems operating under the modified-FCFS dispatching rule. International Journal of Production Research, 56(4), 1486-1503.
4. Bozer, Y. A., & Yen, C. K. (1996). Intelligent dispatching rules for trip-based material handling systems. Journal of Manufacturing Systems, 15(4), 226-239.
5. Brezovnik, S., Gotlih, J., Balič, J., Gotlih, K., & Brezočnik, M. (2015). Optimization of an automated storage and retrieval systems by swarm intelligence. Procedia Engineering, 100, 1309-1318.
6. Caridá, V. F., Morandin, O., & Tuma, C. C. M. (2015). Approaches of fuzzy systems applied to an AGV dispatching system in a FMS. The International Journal of Advanced Manufacturing Technology, 79(1-4), 615-625.
7. Cho, H. M., & Jeong, I. J. (2017). A two-level method of production planning and scheduling for bi-objective reentrant hybrid flow shops. Computers & Industrial Engineering, 106, 174-181.
8. Confessore, G., Fabiano, M., & Liotta, G. (2013). A network flow based heuristic approach for optimising AGV movements. Journal of Intelligent Manufacturing, 24(2), 405-419.
9. Cong, P. A. N., Zhang, J., & Wei, Q. I. N. (2017). Real-time OHT Dispatching Mechanism for the Interbay Automated Material Handling System with Shortcuts and Bypasses. Chinese Journal of Mechanical Engineering, 30(3), 663-675.
10. Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
11. Gola, A., & Kłosowski, G. (2019). Development of computer-controlled material handling model by means of fuzzy logic and genetic algorithms. Neurocomputing.
12. Ho, Y. C., & Chien, S. H. (2006). A simulation study on the performance of task-determination rules and delivery-dispatching rules for multiple-load AGVs. International journal of production research, 44(20), 4193-4222.
13. Ho, Y. C., Lin, J. W., Liu, H. C., & Yih, Y. (2016). A study on the lot production management in a thin-film-transistor liquid-crystal display fab. Journal of Manufacturing Systems, 40, 9-25.
14. Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of manufacturing systems, 31(3), 288-300.
15. Hu, P., Chen, H., Wang, X., & Shi, M. (2019, November). Model and Algorithm for Co-scheduling of Stackers and Single RGV during retrieval Process in AS/RS. In IOP Conference Series: Materials Science and Engineering (Vol. 688, No. 5, p. 055083). IOP Publishing.
16. Hu, W., Mao, J., & Wei, K. (2013, August). Energy-efficient dispatching solution in an automated air cargo terminal. In 2013 IEEE International Conference on Automation Science and Engineering (CASE) (pp. 144-149). IEEE.
17. Huang, Y. S., & Chen, H. W. (2016). A mixed dispatching rule for semiconductor wafer fabrication. International Journal of Systems Science: Operations & Logistics, 5(3), 195-203.
18. Hwang, S., Hong, S. P., & Jang, Y. J. (2018, August). Dynamic scheduling of the dual stocker system using reinforcement learning. In IFIP International Conference on Advances in Production Management Systems (pp. 482-489). Springer, Cham.
19. Jang, Y. J., Choi, G. H., & Kim, S. I. (2005, September). Modeling and analysis of stocker system in semiconductor and LCD fab. In ISSM 2005, IEEE International Symposium on Semiconductor Manufacturing, 2005. (pp. 273-276). IEEE.
20. Jeong, B. H., & Randhawa, S. U. (2001). A multi-attribute dispatching rule for automated guided vehicle systems. International Journal of Production Research, 39(13), 2817-2832.
21. Jin, M., & Wang, Y. (2017). Task Scheduling for Autonomous Shuttle and Stacker Crane Warehousing Systems. In IIE Annual Conference. Proceedings (pp. 970-975). Institute of Industrial and Systems Engineers (IISE).
22. Klei, C. M., & Kim, J. (1996). AGV dispatching. International Journal of Production Research, 34(1), 95-110.
23. Kung, Y., Kobayashi, Y., Higashi, T., Sugi, M., & Ota, J. (2014). Order scheduling of multiple stacker cranes on common rails in an automated storage/retrieval system. International Journal of Production Research, 52(4), 1171-1187.
24. Lee, J. and MANEESAVET, R. (1999). Dispatching rail-guided vehicles and scheduling jobs in a flexible manufacturing system. International journal of production research, 37(1), 111-123.
25. Lee, J., & Srisawat, T. (2006). Effect of manufacturing system constructs on pick-up and drop-off strategies of multiple-load AGVs. International journal of production research, 44(4), 653-673.
26. Liao, D. Y., & Fu, H. S. (2004, May). Dynamic OHT allocation and dispatching in large-scaled 300 mm AMHS management. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292) (Vol. 4, pp. 3630-3635). IEEE.
27. Liu, H. C., & Yih, Y. (2013). A fuzzy-based approach to the liquid crystal injection scheduling problem in a TFT-LCD fab. International Journal of Production Research, 51(20), 6163-6181.
28. Luo, J., Wu, C. Q., Hong, W. C., Cheng, Y., & Xu, S. Y. (2010, June). Research on Scheduling of the RGV System Based on QPSO. In IEEE ICCA 2010 (pp. 1169-1174). IEEE.
29. Luo, S. (2019, February). RGV optimal scheduling scheme selection in multi-process scenario. In AIP Conference Proceedings (Vol. 2073, No. 1, p. 020092). AIP Publishing.
30. Mohamad, N. R., Fauadi, M. H. F. M., Zainudin, S. F., Noor, A. Z. M., Jafar, F. A., & Ali, M. M. (2018). Optimization of Material Transportation Assignment for Automated Guided Vehicle (AGV) System. International Journal of Engineering & Technology, 7(3.20), 334-338.
31. Morandin, O., Carida, V. F., Kato, E. R. R., & Fonseca, M. A. S. (2011, May). A hierarchical fuzzy rule-based building model applied to a AGV dispatching system in an FMS. In 2011 IEEE International Conference on Robotics and Automation (pp. 3764-3769). IEEE.
32. Nishi, T., & Tanaka, Y. (2012). Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(5), 1230-1243.
33. Rams, H., Schöberl, M., & Schlacher, K. (2018). Optimal Motion Planning and Energy-Based Control of a Single Mast Stacker Crane. IEEE Transactions on Control Systems Technology, 26(4), 1449-1457.
34. Salah, B., Janeh, O., Noche, B., Bruckmann, T., & Darmoul, S. (2017). Design and simulation based validation of the control architecture of a stacker crane based on an innovative wire-driven robot. Robotics and Computer-Integrated Manufacturing, 44, 117-128.
35. Shimizu, T., Suzuki, K., Naito, S., & Ito, S. (2009, August). Two-degree-of-freedom control of a stacker crane. In 2009 ICCAS-SICE (pp. 2480-2484). IEEE.
36. Singh, N., Dave, V., Kota, J., Singh, S. K., Sakrikar, R., & Sarngadharan, P. V. (2019). Modular Mission Control for Automated Material Handling System and Performance Analysis—A Case Study. In Machines, Mechanism and Robotics (pp. 329-340). Springer, Singapore.
37. Staudecker, M., Schlacher, K., & Hansl, R. (2008). Passivity based control and time optimal trajectory planning of a single mast stacker crane. IFAC Proceedings Volumes, 41(2), 875-880.
38. Tseng, S. S., Chang, F. M., Chu, Y. S., & Chi, P. J. (2011). A GA-based method to reduce material handling: the case of TFT-LCD array Fabs in Taiwan. International Journal of Production Research, 49(22), 6691-6711.
39. Udhayakumar, P., & Kumanan, S. (2010). Task scheduling of AGV in FMS using non-traditional optimization techniques. International Journal of Simulation Modelling, 9(1), 28-39.
40. Wang, C. N., Lee, Y. H., Hsu, H. P., & Nguyen, D. H. (2016). The heuristic preemptive dispatching method for convey-based automated material handling system of 450 mm wafer fabrication. Computers & Industrial Engineering, 96, 52-60.
41. Wang, C., Fang, W., & Guan, Z. (2018). Simulation based Design for Materials Delivery System of Engineering Machinery Assembly Line. In 2018 7th International Conference on Sustainable Energy and Environment Engineering (ICSEEE 2018). Atlantis Press.
42. Wang, X., & Lu, J. (2010, November). Research on Control Method of Neural Network for Stacker Crane. In 2010 International Conference on E-Product E-Service and E-Entertainment (pp. 1-4). IEEE.
43. Wang, Y., Man, R., Zhao, X., & Liu, H. (2020). Modeling of Parallel Movement for Deep-lane Unit Load Autonomous Shuttle and Stacker Crane Warehousing Systems. Processes, 8(1), 80.
44. Wang, Z., Zhou, Z., & Liu, J. (2019, April). Research and Analysis of Intelligent RGV Based on Dynamic Scheduling Optimization Model. In Journal of Physics: Conference Series (Vol. 1187, No. 3, p. 032025). IOP Publishing.
45. Wu, L., Zhang, G., Sun, Y., & Zhang, J. (2010, October). A fuzzy logic-based and hybrid dispatching policy for interbay material handling system in 300mm semiconductor manufacturing system. In 2010 8th International Conference on Supply Chain Management and Information (pp. 1-6). IEEE.
46. Yang, T., Kuo, Y., & Cho, C. (2007). A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem. European Journal of Operational Research, 176(3), 1859-1873.
47. Yang, T., Kuo, Y., Hsieh, C. H., & Ge, W. C. (2016). An exploratory study of virtual cell design for thin-film transistor–liquid crystal display (TFT-LCD) array manufacturing. The International Journal of Advanced Manufacturing Technology, 83(1-4), 633-644.
48. Yao, S., Jiang, Z., Li, N., Geng, N., & Liu, X. (2011). A decentralised multi-objective scheduling methodology for semiconductor manufacturing. International Journal of Production Research, 49(24), 7227-7252.
相關網站
1. 經濟日報,2020,“今年全球LCD電視面板出貨量 將降一成”,Retrieved April 16, 2020,from https://money.udn.com/money/story/5612/4461314
2. Insight,2018,“ TFT LCD Manufacturing Process ”,Retrieved April 16, 2020,from https://insightsolutionsglobal.com/tft-lcd-manufacturing-process/
3. 友達光電,2020,“顯示器解決方案- TFT-LCD製程”,Retrieved April 16, 2020,from https://www.auo.com/zh-TW/TFT-LCD_Introduction/index/TFT_LCD_Process
4. 群創光電,2020,“TFT-LCD製程介紹”,Retrieved April 16, 2020,from http://www.innolux.com/Pages/TW/Technology/Production_Process_TW.html
5. 盟立自動化,2018,“OHT-節省廠內空間的好幫手”,Retrieved April 19, 2020,from https://reurl.cc/kdlGxn
6. 村田機械,2020,“潔淨室物料搬運系統”,Retrieved April 19, 2020,from https://www.muratec.net/cfa/products/ohs.html
7. 盟立自動化,2020,“潔淨室物料搬運系統”,Retrieved April 19, 2020,from https://reurl.cc/D9A1dR
8. MDPI,2020,“Modeling of Parallel Movement for Deep-Lane Unit Load Autonomous Shuttle and Stacker Crane Warehousing Systems”,Retrieved April 19, 2020,from https://www.mdpi.com/2227-9717/8/1/80 |