博碩士論文 107324007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.137.187.233
姓名 高思穠(Szu-Nung Kao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以第一原理計算探討鋰於鈮摻雜二氧化鈦之嵌入與擴散路徑
(Investigating Lithium Intercalation and Diffusion in Nb-Doped TiO2 by First Principles Calculations)
相關論文
★ 以第一原理計算探討鋰離子於鐵摻雜磷酸鋰鈷之塊材與表面附近之擴散路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-30以後開放)
摘要(中) 近年來二氧化鈦
因為其較高的理論電容值、安全性、化學穩定性與容易取得等特
點 成為了 鋰離子電池負極材料的熱門人選。然而,在實際情況下,二氧化鈦卻存在著
高能隙所造成 之 低電導率 以及受限的鋰離子擴散表現等缺點。為了改善上述的缺點,
許多實驗團隊選擇在二氧化鈦中摻雜其他元素來提升其電池上的表現,其中,鈮金屬
為所摻雜元素中的熱門選擇。
本研究將銳鈦礦 (anatase) 、金紅石 (rutile) 與單斜晶系二氧化鈦 (TiO2(B)) 三種常見於鋰離子負極材料的二氧化鈦晶型皆列入考慮,並以第一原理之計算來分析摻雜鈮金屬後在稀薄鋰離子濃度情況下對鋰離子嵌入與擴散的影響。在摻雜鈮金屬後,三種晶型之二氧化鈦皆出現晶格膨脹的現象,其歸因於Nb5+的離子半徑大於Ti4+的緣故。為了觀察鈮金屬對於鋰離子擴散上的影響,考量了距離鈮金屬較近與較遠的兩條路徑,鋰離子分別被置於三種晶相中較可能之嵌入點位,而所有結構之鋰離子嵌入能相較無改質之二氧化鈦皆有明顯下降的趨勢,其中金紅石 (Rutile) 下降最為劇烈。而鋰離子之擴散移動路徑則是藉由CI-NEB (Climbing Image Nudged Elastic Band) 方法由穩定嵌入點位移動至鄰近的穩定嵌入點位計算所得。三種晶相的擴散能障皆有些微上升的情況,而距離鈮較近的路徑上升幅度又較為明顯,其原因為摻雜鈮金屬後產生的極化子與鋰離子產生強作用力所導致。此外,三種結構之電子結構也進行了計算分析,結果顯示在摻雜鈮金屬後價帶 (valence band) 都有往費米能階 (Fermi level) 移動的趨勢,使得能隙值下降,幫助提升電導率。
摘要(英) In recent years, titanium dioxide has become a popular anode material for Lithium batteries (LIBs) anode due to its high theoretical specific capacity, safety, chemical stability and easy availability. However, practical application faces difficulties such as low electronic conductivity caused by high band gap and restricted lithium diffusion performance. To overcome the shortcoming above-mentioned, many studies decided to improve the performance of titanium dioxides in lithium batteries by doping with different elements, including niobium which has drawn a great deal of attention.
Our study took three commonly used polymorphs of titanium dioxides in LIBs into consideration: anatase, rutile and TiO2(B). First principles calculation based on density functional theory (DFT) was employed for lithium intercalation and diffusion behavior in Nb-doped TiO2 at dilute lithium concentrations. The lattice parameters of all three polymorphs indicated lattice expansion, which was attributed to the ionic radius of Nb5+ greater than the ionic radius of Ti4+. In order to investigate the effect of niobium on the diffusion of lithium ion near to or far from niobium metal diffusion pathways were considered. Lithium was placed at the most suitable intercalation site for the calculation. Compared with pristine TiO2, lithium insertion energies in Nb-doped TiO2 have significant downward trend, among which rutile had the sharpest decline. The CI-NEB (Climbing Image Nudged Elastic Band) method was performed from the most stable intercalation site to adjacent intercalation site. The activation barriers of three polymorphs increased slightly and the energy barrier of near diffusion pathway was higher than far diffusion pathway. This is attributed to the polaron generated by niobium and lithium which results in strong interaction with lithium. In addition, the electronic structure of three structures were calculated and analyzed. The results showed that valence band tended to move towards the Fermi level, which reduced the band gap and facilitated improvement of electronic conductivity.
關鍵字(中) ★ 二氧化鈦
★ 摻雜
★ 鋰擴散路徑
★ 密度泛函理論
★ 鋰離子電池
★ 廣義梯度近似
關鍵字(英) ★ TiO2
★ Lithium batteries
★ Doped
★ Lithium diffusion
★ Niobium
★ Density functional theory
★ DFT
★ GGA+U
論文目次 Table of content
中文摘要 ................................................................................................................................................... i
Abstract .................................................................................................................................................... ii
Chapter 1 Background ............................................................................................................................. 1
1.1 Introduction ................................................................................................................... 1
1.2 Illustration of LIBs ........................................................................................................ 3
1.3 Titanium dioxides (TiO2) as an anode material of LIBs ............................................... 4
1.3.1 Titanium dioxides (TiO2) .............................................................................................. 5
1.3.2 Modified titanium dioxide........................................................................................... 12
1.3.3 Experimental Study on doped tiatnium dioxides LIBs ............................................... 15
1.3.4 Computational study on titanium dioxides.................................................................. 18
1.3.5 Computational study on Nb-doped titanium dioxides ................................................. 22
1.4 Motivation ................................................................................................................... 25
2 Theory and method........................................................................................................................ 26
2.1 First principles calculation .......................................................................................... 26
2.2 Density functional theory ............................................................................................ 27
2.3 Hohenberg-Kohn Theorem ......................................................................................... 28
2.4 Kohn-Sham equation ................................................................................................... 28
2.5 Local-density Approximation ..................................................................................... 29
2.6 Generalized gradient approximation ........................................................................... 30
2.7 DFT+U correction ....................................................................................................... 30
2.8 Bloch’s theorem .......................................................................................................... 31
2.9 k-points ........................................................................................................................ 31
2.10 Spin-polarization ......................................................................................................... 32
2.11 Basis set & Cutoff energy ........................................................................................... 32
2.12 Pseudopotetnail & Plane wave .................................................................................... 33
2.13 Electronic structure ..................................................................................................... 35
ix
2.14 Geometry optimization................................................................................................ 35
2.15 Material Studio & CASTEP ........................................................................................ 36
Chapter 3 Computational details ........................................................................................................... 37
3.1 Pristine TiO2 ................................................................................................................................ 38
3.2 Niobium-doped TiO2 ................................................................................................................... 40
3.3 The lithium intercalation sites of TiO2 and Niobium-doped TiO2 .............................................. 43
3.4 The lithium diffusion pathway of TiO2 and Niobium-doped TiO2 ............................................. 45
Chapter 4 Results and discussions ........................................................................................................ 49
4-1 Lattice parameters of niobium-doped TiO2 ................................................................................ 49
4-2 Electron density difference mapping .......................................................................................... 52
4-2-1 Pristine titanium dioxides .................................................................................................... 52
4-2-2 Polarons and Nb-doped titanium dioxides ........................................................................... 54
4-3 Lithium intercalation energy ....................................................................................................... 59
4-3-1 Pristine TiO2 ........................................................................................................................ 59
4-3-2 Niobium-doped TiO2 ........................................................................................................... 60
4-4 Diffusion path of lithium atom ................................................................................................... 63
4-4-1 Diffusion path of lithium atom in pristine TiO2 .................................................................. 63
4-4-2 Diffusion path of lithium atom in Nb-doped TiO2 .............................................................. 64
4-5 Electronic structure ..................................................................................................................... 72
Chapter 5 Conclusion ............................................................................................................................ 77
References ......................................................................................................................................... 79
Appendix ............................................................................................................................................... 86
參考文獻 1. Whittingham, M. S., Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192, 1126.
2. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—the Solid Electrolyte Interphase Model. Journal of The Electrochemical Society 1979, 126, 2047.
3. Li, W.; Yao, H.; Yan, K.; Zheng, G.; Liang, Z.; Chiang, Y.-M.; Cui, Y., The Synergetic Effect of Lithium Polysulfide and Lithium Nitrate to Prevent Lithium Dendrite Growth. Nature Communications 2015, 6, 7436.
4. Nagaura, T. J. P. i. B.; Cells, S., Lithium Ion Rechargeable Battery, 1990; Vol. 9, p 209.
5. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-Performance Lithium Battery Anodes Using Silicon Nanowires. Nature Nanotechnology 2008, 3, 31-35.
6. Nazri, G.-A.; Pistoia, G., Lithium Batteries: Science and Technology; Springer Science & Business Media, 2008.
7. Tarascon, J. M.; Armand, M., Issues and Challenges Facing Rechargeable Lithium Batteries. In Materials for Sustainable Energy, Co-Published with Macmillan Publishers Ltd, UK: 2010; pp 171-179.
8. Meng, Y. S.; Arroyo-de Dompablo, M. E. J. E.; Science, E., First Principles Computational Materials Design for Energy Storage Materials in Lithium Ion Batteries. 2009, 2, 589-609.
9. Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C., Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. Journal of Power Sources 2014, 257, 421-443.
10. Pekakis, P. A.; Xekoukoulotakis, N. P.; Mantzavinos, D., Treatment of Textile Dyehouse Wastewater by Tio2 Photocatalysis. Water Research 2006, 40, 1276-1286.
11. Yang, L.; Yu, L. E.; Ray, M. B., Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Research 2008, 42, 3480-3488.
12. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. J. o. p.; reviews, p. C. P., Titanium Dioxide Photocatalysis. 2000, 1, 1-21.
13. Ito, S., et al., High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Advanced Materials 2006, 18, 1202-1205.
14. Lee, C. Y.; Hupp, J. T., Dye Sensitized Solar Cells: TiO2 Sensitization with a Bodipy-Porphyrin Antenna System. Langmuir 2010, 26, 3760-3765.
15. Xu, J.; Jia, C.; Cao, B.; Zhang, W. F., Electrochemical Properties of Anatase TiO2 Nanotubes as an Anode Material for Lithium-Ion Batteries. Electrochimica Acta 2007, 52, 8044-8047.
80
16. Pfanzelt, M.; Kubiak, P.; Fleischhammer, M.; Wohlfahrt-Mehrens, M., TiO2 Rutile—an Alternative Anode Material for Safe Lithium-Ion Batteries. Journal of Power Sources 2011, 196, 6815-6821.
17. Madian, M.; Eychmüller, A.; Giebeler, L., Current Advances in TiO2-Based Nanostructure Electrodes for High Performance Lithium Ion Batteries. Batteries 2018, 4.
18. Han, H.; Song, T.; Lee, E.-K.; Devadoss, A.; Jeon, Y.; Ha, J.; Chung, Y.-C.; Choi, Y.-M.; Jung, Y.-G.; Paik, U., Dominant Factors Governing the Rate Capability of a TiO2 Nanotube Anode for High Power Lithium Ion Batteries. ACS Nano 2012, 6, 8308-8315.
19. Feist, T. P.; Davies, P. K., The Soft Chemical Synthesis of TiO2 (B) from Layered Titanates. Journal of Solid State Chemistry 1992, 101, 275-295.
20. Zhang, Y.; Jiang, Z.; Huang, J.; Lim, L. Y.; Li, W.; Deng, J.; Gong, D.; Tang, Y.; Lai, Y.; Chen, Z. J. R. A., Titanate and Titania Nanostructured Materials for Environmental and Energy Applications: A Review. 2015, 5, 79479-79510.
21. van de Krol, R., In Situ X-Ray Diffraction of Lithium Intercalation in Nanostructured and Thin Film Anatase TiO2. Journal of The Electrochemical Society 1999, 146, 3150.
22. Wagemaker, M.; Kentgens, A. P. M.; Mulder, F. M., Equilibrium Lithium Transport between Nanocrystalline Phases in Intercalated TiO2 Anatase. Nature 2002, 418, 397-399.
23. Cava, R. J.; Murphy, D. W.; Zahurak, S.; Santoro, A.; Roth, R. S., The Crystal Structures of the Lithium-Inserted Metal Oxides Li0.5tio2 Anatase, Liti2o4 Spinel, and Li2Ti2O4. Journal of Solid State Chemistry 1984, 53, 64-75.
24. Kavan, L.; Kratochvilová, K.; Grätzel, M., Study of Nanocrystalline TiO2 (Anatase) Electrode in the Accumulation Regime. Journal of Electroanalytical Chemistry 1995, 394, 93-102.
25. Rai, A. K.; Anh, L. T.; Gim, J.; Mathew, V.; Kang, J.; Paul, B. J.; Song, J.; Kim, J., Simple Synthesis and Particle Size Effects of TiO2 Nanoparticle Anodes for Rechargeable Lithium Ion Batteries. Electrochimica Acta 2013, 90, 112-118.
26. Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J., High Lithium Electroactivity of Nanometer-Sized Rutile TiO2. Advanced Materials 2006, 18, 1421-1426.
27. Marchand, R.; Brohan, L.; Tournoux, M., TiO2(B) a New Form of Titanium Dioxide and the Potassium Octatitanate K2ti8o17. Materials Research Bulletin 1980, 15, 1129-1133.
28. Ren, Y.; Liu, Z.; Pourpoint, F.; Armstrong, A. R.; Grey, C. P.; Bruce, P. G., Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries. Angewandte Chemie International Edition 2012, 51, 2164-2167.
81
29. Lübke, M.; Shin, J.; Marchand, P.; Brett, D.; Shearing, P.; Liu, Z.; Darr, J. A., Highly Pseudocapacitive Nb-Doped Tio2 High Power Anodes for Lithium-Ion Batteries. Journal of Materials Chemistry A 2015, 3, 22908-22914.
30. Kanamura, K.; Yuasa, K.; Takehara, Z., Diffusion of Lithium in the TiO2 Cathode of a Lithium Battery. Journal of Power Sources 1987, 20, 127-134.
31. Armstrong, G.; Armstrong, A. R.; Canales, J. s.; Bruce, P. G., TiO2(B) Nanotubes as Negative Electrodes for Rechargeable Lithium Batteries. Electrochemical and Solid-State Letters 2006, 9, A139.
32. Jiang, C.; Wei, M.; Qi, Z.; Kudo, T.; Honma, I.; Zhou, H., Particle Size Dependence of the Lithium Storage Capability and High Rate Performance of Nanocrystalline Anatase TiO2 Electrode. Journal of Power Sources 2007, 166, 239-243.
33. Wagemaker, M.; Borghols, W. J. H.; van Eck, E. R. H.; Kentgens, A. P. M.; Kearley, G. J.; Mulder, F. M., The Influence of Size on Phase Morphology and Li-Ion Mobility in Nanosized Lithiated Anatase TiO2. Chemistry – A European Journal 2007, 13, 2023-2028.
34. Qiu, J.; Li, S.; Gray, E.; Liu, H.; Gu, Q.-F.; Sun, C.; Lai, C.; Zhao, H.; Zhang, S., Hydrogenation Synthesis of Blue TiO2 for High-Performance Lithium-Ion Batteries. The Journal of Physical Chemistry C 2014, 118, 8824-8830.
35. Lu, X.; Wang, G.; Zhai, T.; Yu, M.; Gan, J.; Tong, Y.; Li, Y., Hydrogenated TiO2 Nanotube Arrays for Supercapacitors. Nano Letters 2012, 12, 1690-1696.
36. Wang, Y.; Smarsly, B. M.; Djerdj, I., Niobium Doped TiO2 with Mesoporosity and Its Application for Lithium Insertion. Chemistry of Materials 2010, 22, 6624-6631.
37. Lübke, M.; Johnson, I.; Makwana, N. M.; Brett, D.; Shearing, P.; Liu, Z.; Darr, J. A., High Power TiO2 and High Capacity Sn-Doped Tio2 Nanomaterial Anodes for Lithium-Ion Batteries. Journal of Power Sources 2015, 294, 94-102.
38. Xia, T.; Zhang, W.; Wang, Z.; Zhang, Y.; Song, X.; Murowchick, J.; Battaglia, V.; Liu, G.; Chen, X., Amorphous Carbon-Coated TiO2 Nanocrystals for Improved Lithium-Ion Battery and Photocatalytic Performance. Nano Energy 2014, 6, 109-118.
39. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 293, 269.
40. Breault, T. M.; Bartlett, B. M., Lowering the Band Gap of Anatase-Structured TiO2 by Coalloying with Nb and N: Electronic Structure and Photocatalytic Degradation of Methylene Blue Dye. The Journal of Physical Chemistry C 2012, 116, 5986-5994.
41. Andriamiadamanana, C.; Laberty-Robert, C.; Sougrati, M. T.; Casale, S.; Davoisne, C.; Patra, S.; Sauvage, F., Room-Temperature Synthesis of Iron-Doped Anatase TiO2 for Lithium-Ion Batteries and Photocatalysis. Inorganic Chemistry 2014, 53, 10129-10139.
82
42. Fehse, M., et al., Nb-Doped TiO2 Nanofibers for Lithium Ion Batteries. The Journal of Physical Chemistry C 2013, 117, 13827-13835.
43. Usui, H.; Yoshioka, S.; Wasada, K.; Shimizu, M.; Sakaguchi, H., Nb-Doped Rutile TiO2: A Potential Anode Material for Na-Ion Battery. ACS Appl Mater Interfaces 2015, 7, 6567-73.
44. Morgan, B.; Watson, G., GGA+ U Description of Lithium Intercalation into Anatase Tio_ {2}. Phys. Rev. B 2010, 82.
45. Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W., Diffusion of Li-Ions in Rutile. An Ab Initio Study. Solid State Ionics 2003, 157, 35-38.
46. Arrouvel, C.; Parker, S. C.; Islam, M. S., Lithium Insertion and Transport in the TiO2−B Anode Material: A Computational Study. Chemistry of Materials 2009, 21, 4778-4783.
47. Dawson, J. A.; Robertson, J., Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO2(B). The Journal of Physical Chemistry C 2016, 120, 22910-22917.
48. Morgan, B. J.; Scanlon, D. O.; Watson, G. W., Small Polarons in Nb- and Ta-Doped Rutile and Anatase TiO2. Journal of Materials Chemistry 2009, 19.
49. Han, X.; Song, K.; Lu, L.; Deng, Q.; Xia, X.; Shao, G., Limitation and Extrapolation Correction of the GGA + U Formalism: A Case Study of Nb-Doped Anatase TiO2. Journal of Materials Chemistry C 2013, 1.
50. Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review 1964, 136, B864-B871.
51. Kohn, W.; Sham, L. J., Quantum Density Oscillations in an Inhomogeneous Electron Gas. Physical Review 1965, 137, A1697-A1705.
52. Anisimov, V. I.; Aryasetiawan, F.; Lichtenstein, A. I., First-Principles Calculations of the Electronic Structure and Spectra of Strongly Correlated Systems: Thelda+Umethod. Journal of Physics: Condensed Matter 1997, 9, 767-808.
53. Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D., Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Reviews of Modern Physics 1992, 64, 1045-1097.
54. Bachelet, G. B.; Hamann, D. R.; Schlüter, M., Pseudopotentials That Work: From H to Pu. Physical Review B 1982, 26, 4199-4228.
55. BIOVIA, D. S. J. S. D., CA, Biovia Materials Studio. 2016.
56. Segall, M. D.; Lindan, P. J. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C., First-Principles Simulation: Ideas, Illustrations and the Castep Code. Journal of Physics: Condensed Matter 2002, 14, 2717-2744.
57. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77, 3865-3868.
83
58. Yeh, H.-L.; Tai, S.-H.; Hsieh, C.-M.; Chang, B. K., First-Principles Study of Lithium Intercalation and Diffusion in Oxygen-Defective Titanium Dioxide. The Journal of Physical Chemistry C 2018, 122, 19447-19454.
59. Burdett, J. K.; Hughbanks, T.; Miller, G. J.; Richardson, J. W.; Smith, J. V., Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K. Journal of the American Chemical Society 1987, 109, 3639-3646.
60. Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W., Effect of Diffusion on Lithium Intercalation in Titanium Dioxide. Physical Review Letters 2001, 86, 1275-1278.
61. Stashans, A.; Lunell, S.; Bergström, R.; Hagfeldt, A.; Lindquist, S.-E., Theoretical Study of Lithium Intercalation in Rutile and Anatase. Physical Review B 1996, 53, 159-170.
62. Koudriachova, M. V.; Harrison, N. M.; de Leeuw, S. W., Density-Functional Simulations of Lithium Intercalation in Rutile. Physical Review B 2002, 65, 235423.
63. Tielens, F.; Calatayud, M.; Beltrán, A.; Minot, C.; Andrés, J., Lithium Insertion and Mobility in the Tio2-Anatase/Titanate Structure: A Periodic DFT Study. Journal of Electroanalytical Chemistry 2005, 581, 216-223.
64. Dylla, A. G.; Henkelman, G.; Stevenson, K. J., Lithium Insertion in Nanostructured TiO2(B) Architectures. Accounts of Chemical Research 2013, 46, 1104-1112.
65. Morgan, B., Lithium Intercalation into Tio2(B): A Comparison of LDA, GGA, and GGA+U Density Functional Calculations. Physical Review B 2012, 86.
66. Panduwinata, D.; Gale, J. D., A First Principles Investigation of Lithium Intercalation in TiO2-B. Journal of Materials Chemistry 2009, 19, 3931-3940.
67. Armstrong, A. R.; Arrouvel, C.; Gentili, V.; Parker, S. C.; Islam, M. S.; Bruce, P. G., Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study. Chemistry of Materials 2010, 22, 6426-6432.
68. Kong, L. M.; Zhu, B. L.; Pang, X.-Y.; Wang, G.-C., First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries. 2016, 32, 656-664.
69. Uberuaga, B.; Jonsson, H., A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. J. Chem. Phys. 2000, 113, 9901-9904.
70. Lü, X.; Mou, X.; Wu, J.; Zhang, D.; Zhang, L.; Huang, F.; Xu, F.; Huang, S., Improved-Performance Dye-Sensitized Solar Cells Using Nb-Doped TiO2 Electrodes: Efficient Electron Injection and Transfer. Advanced Functional Materials 2010, 20, 509-515.
84
71. Zhao, F.; Wang, B.; Tang, Y.; Ge, H.; Huang, Z.; Liu, H. K., Niobium Doped Anatase TiO2 as an Effective Anode Material for Sodium-Ion Batteries. Journal of Materials Chemistry A 2015, 3, 22969-22974.
72. Depero, L. E.; Sangaletti, L.; Allieri, B.; Bontempi, E.; Salari, R.; Zocchi, M.; Casale, C.; Notaro, M., Niobium-Titanium Oxide Powders Obtained by Laser-Induced Synthesis: Microstructure and Structure Evolution from Diffraction Data. Journal of Materials Research 1998, 13, 1644-1649.
73. Elmaslmane, A. R.; Watkins, M. B.; McKenna, K. P., First-Principles Modeling of Polaron Formation in TiO2 Polymorphs. Journal of Chemical Theory and Computation 2018, 14, 3740-3751.
74. Shibuya, T.; Yasuoka, K.; Mirbt, S.; Sanyal, B., A Systematic Study of Polarons Due to Oxygen Vacancy Formation at the Rutile TiO2(110) Surface by Gga +Uand Hse06 Methods. Journal of Physics: Condensed Matter 2012, 24, 435504.
75. Czoska, A. M.; Livraghi, S.; Chiesa, M.; Giamello, E.; Agnoli, S.; Granozzi, G.; Finazzi, E.; Valentin, C. D.; Pacchioni, G., The Nature of Defects in Fluorine-Doped TiO2. The Journal of Physical Chemistry C 2008, 112, 8951-8956.
76. Deák, P.; Kullgren, J.; Frauenheim, T., Polarons and Oxygen Vacancies at the Surface of Anatase Tio2. physica status solidi (RRL) – Rapid Research Letters 2014, 8, 583-586.
77. Stashans, A.; Bravo, Y., Large Hole Polarons in Sc-Doped TiO2 Crystals. Modern Physics Letters B 2013, 27, 1350113.
78. Zachauchristiansen, B., Lithium Insertion in Different TiO2 Modifications. Solid State Ionics 1988, 28–30, 1176-1182.
79. Deskins, N. A.; Dupuis, M., Electron Transport Via Polaron Hopping in Bulk TiO2: A Density Functional Theory Characterization. Physical Review B 2007, 75, 195212.
80. Orita, N., Generalized Gradient Approximation +Ustudy for Metallization Mechanism of Niobium-Doped Anatase Titanium Dioxide. Japanese Journal of Applied Physics 2010, 49.
81. Furubayashi, Y.; Hitosugi, T.; Yamamoto, Y.; Inaba, K.; Kinoda, G.; Hirose, Y.; Shimada, T.; Hasegawa, T., A Transparent Metal: Nb-Doped Anatase Tio2. Applied Physics Letters 2005, 86, 252101.
82. Hirano, M.; Matsushima, K., Photoactive and Adsorptive Niobium-Doped Anatase (TiO2) Nanoparticles: Influence of Hydrothermal Conditions on Their Morphology, Structure, and Properties. Journal of the American Ceramic Society 2006, 89, 110-117.
83. Liu, X. D.; Jiang, E. Y.; Li, Z. Q.; Song, Q. G., Electronic Structure and Optical Properties of Nb-Doped Anatase TiO2. Applied Physics Letters 2008, 92, 252104.
84. Kamisaka, H.; Hitosugi, T.; Suenaga, T.; Hasegawa, T.; Yamashita, K., Density Functional Theory Based First-Principle Calculation of Nb-Doped Anatase TiO2 and
85
Its Interactions with Oxygen Vacancies and Interstitial Oxygen. J Chem Phys 2009, 131, 034702.
85. Archana, P. S.; Jose, R.; Jin, T. M.; Vijila, C.; Yusoff, M. M.; Ramakrishna, S., Structural and Electrical Properties of Nb-Doped Anatase TiO2 Nanowires by Electrospinning. Journal of the American Ceramic Society 2010, 93, 4096-4102.
86. Pan, J. W.; Li, C.; Zhao, Y. F.; Liu, R. X.; Gong, Y. Y.; Niu, L. Y.; Liu, X. J.; Chi, B. Q., Electronic Properties of TiO2 Doped with Sc, Y, La, Zr, Hf, V, Nb and Ta. Chemical Physics Letters 2015, 628, 43-48.
87. Lan, T.; Zhang, W.; Wu, N.-L.; Wei, M., Nb-Doped Rutile TiO2 Mesocrystals with Enhanced Lithium Storage Properties for Lithium Ion Battery. Chemistry – A European Journal 2017, 23, 5059-5065.
88. Gardecka, A. J.; Lübke, M.; Armer, C. F.; Ning, D.; Reddy, M. V.; Williams, A. S.; Lowe, A.; Liu, Z.; Parkin, I. P.; Darr, J. A., Nb-Doped Rutile Titanium Dioxide Nanorods for Lithium-Ion Batteries. Solid State Sciences 2018, 83, 115-121.
89. Tanaka, Y.; Usui, H.; Domi, Y.; Ohtani, M.; Kobiro, K.; Sakaguchi, H., Mesoporous Spherical Aggregates Consisted of Nb-Doped Anatase TiO2 Nanoparticles for Li and Na Storage Materials. ACS Applied Energy Materials 2019, 2, 636-643.
指導教授 謝介銘 張博凱(Chieh-Ming Hsie Bor Kae Chang) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明